Weighted linear dynamic logic

Manfred Droste¹ and George Rahonis²

 $^{1} Leipzig \ University, \ Germany \\ ^{2} Aristotle \ University \ of \ Thessaloniki, \ Greece$

GandALF 2016 Catania, September 15, 2016

Linear Temporal Logic (LTL), Pnueli 1977

- LTL = FO logic.
- Satisfiability, validity, logical implication of LTL formulas: PSPACE-complete.
- *LTL*: reasonable for practical applications.
- LTL ⊊ finite automata.
- LTL ⊊ finite automata over infinite words.

Monadic Second Order (MSO) logic

• Büchi 1960, Elgot 1961, Trakhtenbrot 1962:

MSO logic = finite automata.

- Büchi 1962: MSO logic = finite automata over infinite words.
- MSO logic formulas $\xrightarrow{\text{non-elementary}}$ finite automata.
- *MSO* logic: not reasonable for practical applications.

New logic?

- A logic combining the complexity properties of reasoning on LTL and the expressive equivalence to finite automata was greatly desirable.
- Vardi and Wolper 1994: ETL a Temporal logic with Automata Connectives.
- Satisfiability of ETL(=RETL) formulas is PSPACE-complete.
- Vardi 2000: ForSpec, industrial temporal logic used by Intel: RETL+hardware features (clocks and resets).
- 2003 PSL an industrial-standard property-specification language:
 LTL extended with dynamic modalities (borrowed from Dynamic Logic), clocks and resets.
- Vardi 2011, De Giacomo and Vardi 2013, 2015: Linear dynamic logic (LDL).
- LDL is a combination of propositional dynamic logic and LTL.

Quantitative logics required for modern applications

- Droste and Gastin 2005, 2009: Weighted MSO logic over semirings.
- Weighted automata ⊊ weighted MSO logic.
- Restricted weighted MSO logic = weighted automata (Büchi type theorem) but the translation is non-elementary.
- Kupferman and Lustig 2007: Weighted *LTL* over De Morgan Algebras.
- Droste and Vogler 2012: Weighted LTL over arbitrary bounded lattices.
- Bouyer, Markey and Matteplackel 2014, Almagor, Boker and Kupferman 2014, 2016: Weighted LTL over [0, 1].
- Mandrali and Rahonis 2014, 2016: Weighted *LTL* over semirings.
- In this paper: Weighted *LTL* over the naturals is incomparable to weighted automata.

Notations

A alphabet

$$w = w(0) \dots w(n-1) \in A^*$$
, with $w(i) \in A$, $0 \le i \le n-1$
 $w_{>i} = w(i) \dots w(n-1)$ for $0 \le i \le n-1$

LDL - Syntax

• Atomic propositions: $P = \{p_a \mid a \in A\}$.

Definition

Syntax of *LDL* formulas ψ over A :

$$\psi ::= true \mid p_a \mid \neg \psi \mid \psi \land \psi \mid \langle \theta \rangle \psi$$
$$\theta ::= \phi \mid \psi? \mid \theta + \theta \mid \theta; \theta \mid \theta^+$$

 $p_a \in P$, ϕ propositional formula over P.

LDL - Semantics

 ψ LDL formula, $w \in A^*$. Define $w \models \psi$ inductively:

- \bullet w \models true,
- $w \models p_a$ iff w(0) = a.
- $w \models \neg \psi$ iff $w \not\models \psi$,
- $w \models \psi_1 \land \psi_2$ iff $w \models \psi_1$ and $w \models \psi_2$,
- $w \models \langle \phi \rangle \psi$ iff $w \models \phi$ and $w_{>1} \models \psi$,
- $w \models \langle \psi_1? \rangle \psi_2$ iff $w \models \psi_1$ and $w \models \psi_2$,
- $w \models \langle \theta_1 + \theta_2 \rangle \psi$ iff $w \models \langle \theta_1 \rangle \psi$ or $w \models \langle \theta_2 \rangle \psi$,
- $w \models \langle \theta_1; \theta_2 \rangle \psi$ iff w = uv, $u \models \langle \theta_1 \rangle$ true, and $v \models \langle \theta_2 \rangle \psi$,
- $w \models \langle \theta^+ \rangle \psi$ iff there exists n with $1 \leq n \leq |w|$ such that $w \models \langle \theta^n \rangle \psi$. θ^n , $n \ge 1$ is defined by $\theta^1 = \theta$ and $\theta^n = \theta^{n-1}$: θ for n > 1.

LDL - Main results (De Giacomo and Vardi 2013)

- LDL formulas = rational expressions.
 - Rational expressions $\stackrel{\text{linear}}{\longrightarrow}$ LDL formulas .
 - LDL formulas $\xrightarrow{\text{doubly}}$ rational expressions.
 - LDL formulas $\xrightarrow{\text{exponential}}$ finite automata.
- Satisfiability, validity, logical implication of LDL formulas: PSPACE-complete.

Weighted rational expressions

- $(K, +, \cdot, 0, 1)$ semiring
- Weighted rational expressions over A and K :

$$E ::= ka \mid E + E \mid E \cdot E \mid E^+$$

 $a \in A, k \in K$

Generalized weighted rational expressions over A and K :

$$E ::= ka \mid E + E \mid E \cdot E \mid E^+ \mid E \odot E.$$

 $a \in A, k \in K$

- Semantics: $||E||: A^* \to K$ rational (g-rational)
 - ||ka|| = ka
 - $||E_1 + E_2|| = ||E_1|| + ||E_2||$
 - $||E_1 \cdot E_2|| = ||E_1|| \cdot ||E_2||$ (Cauchy product)
 - $||E^+|| = ||E||^+$ ($||E||(\varepsilon) = 0$, proper)
 - $||E_1 \odot E_2|| = ||E_1|| \odot ||E_2||$ (Hadamard product)

Weighted LDL - Syntax

Atomic propositions: $P = \{p_a \mid a \in A\}$.

Definition

Syntax of weighted *LDL* formulas φ over A and K:

$$\varphi ::= k \mid \psi \mid \varphi \oplus \varphi \mid \varphi \otimes \varphi \mid \langle \rho \rangle \varphi$$
$$\rho ::= \phi \mid \varphi? \mid \rho \oplus \rho \mid \rho \cdot \rho \mid \rho^{\oplus}$$

 $k \in K$, ϕ propositional formula over P, ψ LDL formula.

Weighted LDL - Semantics

 φ weighted *LDL* formula. Semantics $\|\varphi\|: A^* \to K$, for $w \in A^*$:

- $\bullet \|k\|(w) = k,$
- $ullet \|\psi\|\left(w
 ight) = \left\{egin{array}{ll} 1 & ext{if } w \models \psi \ 0 & ext{otherwise} \end{array}
 ight.,$
- $\|\varphi_1 \oplus \varphi_2\|$ $(w) = \|\varphi_1\|$ $(w) + \|\varphi_2\|$ (w),
- $\bullet \ \left\| \varphi_1 \otimes \varphi_2 \right\| (w) = \left\| \varphi_1 \right\| (w) \cdot \left\| \varphi_2 \right\| (w),$
- $\|\langle \phi \rangle \varphi \| (w) = \|\phi \| (w) \cdot \|\varphi \| (w_{\geq 1})$,
- $\|\langle \varphi_1 ? \rangle \varphi_2 \| (w) = \|\varphi_1 \| (w) \cdot \|\varphi_2 \| (w)$,
- $\bullet \ \left\| \left\langle \rho_{1} \oplus \rho_{2} \right\rangle \varphi \right\| \left(w \right) = \left\| \left\langle \rho_{1} \right\rangle \varphi \right\| \left(w \right) + \left\| \left\langle \rho_{2} \right\rangle \varphi \right\| \left(w \right),$
- $\|\langle \rho_1 \cdot \rho_2 \rangle \, \phi \| \, (w) = \sum_{w=uv} \left(\|\langle \rho_1 \rangle \, true \| \, (u) \cdot \|\langle \rho_2 \rangle \, \phi \| \, (v) \right)$,
- $\bullet \ \|\langle \rho^{\oplus} \rangle \ \varphi \| \ (w) = \sum_{n \geq 1} \|\langle \rho^n \rangle \ \varphi \| \ (w) \qquad (\|\langle \rho \rangle \ true \| \ \mathsf{proper})$ $\rho^n, \ n \geq 1 \ \mathsf{is \ defined \ by} \ \rho^1 = \rho \ \mathsf{and} \ \rho^n = \rho^{n-1} \cdot \rho \ \mathsf{for} \ n > 1.$

Weighted LDL - Example

• LDL formula:

• $(\mathbb{N}, +, \cdot, 0, 1)$, $a \in A$, $k \in \mathbb{N} \setminus \{0\}$

$$arphi = \left\langle \left(\left(\left\langle \left(k \otimes p_{a}
ight) ? \right
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight) ? \right
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight) ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight) ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight) ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight) ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight) ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight) ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle ?
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight
angle \left\langle \left(\left\langle \left(k \otimes p_{a}
ight
angle ?
ight$$

• $\|\varphi\|(w) = \begin{cases} k^{2n} & \text{if } w = a^{2n}, n \ge 0 \\ 0 & \text{otherwise} \end{cases}$

Weighted LDL - Main results

- LDL-definable series = g-rational series (No fragments for LDL!).
 - ullet Weighted g-rational expressions $\stackrel{\text{linear}}{\longrightarrow}$ weighted LDL formulas.
- K commutative:

LDL-definable series = rational series = recognizable series.

- Weighted LDL formulas $\frac{\text{doubly}}{\text{exponential}}$ weighted automata.
- *K* idempotent:
 - Weighted *LDL* formulas $\xrightarrow{\text{exponential}}$ weighted automata.
- K computable field, φ, φ' weighted LDL formulas, $k \in K$: $\|\varphi\| = \|\varphi'\|$, $\|\varphi\| = \widetilde{k}$ (constant series): decidable in *doubly exponential* time.

Weighted LDL - Comparison to other weighted logics

- Weighted *LDL* and weighted *LTL* over the naturals are incomparable.
- Weighted LDL and weighted FO logic over the naturals are incomparable.
- K commutative:

```
restricted weighted MSO logic = weighted LDL, restricted weighted FO logic \subsetneq weighted LDL, restricted weighted LTL \subsetneq weighted LDL.
```

• K dual continuous with the Arden fixed point property:

weighted $\mathit{LDL} = \mathsf{weighted} \land \mathsf{-free} \ \mu\mathsf{-calculus}.$

LDL over infinite words, Vardi 2011

• Modified syntax for interpretation over infinite words.

LDL- ω -definable languages $= \omega$ -rational languages.

Satisfiability of LDL formulas: PSPACE-complete.

Weighted LDL over infinite words - Main results

- K totally complete semiring.
- Modified syntax for interpretation over infinite words.

LDL- ω -definable series = g- ω -rational series.

- No fragments for LDL!
- K totally commutative complete:

 $\mathit{LDL}\text{-}\omega\text{-}\mathsf{definable}$ series $=\omega\text{-}\mathsf{rational}$ series $=\omega\text{-}\mathsf{recognizable}$ series.

- K idempotent:
 - Weighted *LDL* formulas exponential weighted Büchi automata.

Weighted *LDL* over infinite words - Comparison to other weighted logics

• K totally commutative complete:

```
restricted weighted \omega-MSO logic = weighted \omega-LDL, restricted weighted \omega-FO logic \subsetneq weighted \omega-LDL, restricted weighted \omega-LTL \subsetneq weighted \omega-LDL.
```

ullet K dual continuous semiring with the Arden fixed point property:

```
weighted \omega\text{-LDL} = \text{weighted } \omega\text{-} \land \text{-free } \mu\text{-calculus}.
```

Future research

- Translation of weighted LDL formulas over infinite words to weighted automata (not idempotent semirings).
 - Complexity results.
- Weighted *LDL* over more general structures, reasonable for practical applications, e.g. valuation monoids.

References

- M. Y. Vardi, P. Wolper, Reasoning about infinite computations, Information and Computation 115(1994) 1–37.
- M. Y. Vardi, The rice and fall of LTL, *Presentation at GandALF 2011*.
- G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces, in: *Proceedings of IJCAI 2013*, pp. 854–860.
- G. De Giacomo, M. Y. Vardi, Synthesis for LTL and LDL on finite traces, in: *Proceedings of IJCAI 2015*, pp. 1558–1564.

Thank you Ευχαριστώ