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Game theory: for competitive interactions.

Games involve players, strategies, outcomes, preferences.

Main result in game theory (Nash 1950):
Nash equilibrium (stable strategy combo) in a large class of games.

Problems:

1. Nash equilibrium (NE) requires randomization.

2. Why would players play NE?

Partial solution (Kukushkin 2002):
Finite convergence to pure NE in finite sequential games.

We generalize 2002 for finite and infinite sequential games.
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Finite sequential games
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a,b,c are players

x , y , z are outcomes.

A preference is a binary relation over the outcomes.

Classical outcome (2, 7, 4): player a gets 2, player b gets 7...

Classical preference: (0, 2, 1) ≺b (9, 3, 0).
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Strategies and strategy profiles

Double lines represent strategical choices.

Strategy for player a

Strategy profile, induced outcome
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Nash equilibrium
Definition by example

Game ¬NE

¬NE NE

a
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0, 0 3, 1
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0, 0 3, 1

1953 Kuhn: all finite sequential games have NE.

1995 Aumann: in some games, some NE correspond to common
knowledge of rationality.

I How about the other games?
I What if some players are not knowledgeable?
I What if some players are not rational?
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Nash Equilibrium and better-response dynamics

I For all non-NE, the better-response lets one player improve it.

I NE(s) ⇔ s is a sink for the better-response dynamics.
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Lazy convertibility
Restricting how players change strategies
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If a player can convert and reach a leaf, she can do so lazily.
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Lazy improvement (lazy better-response dynamics)
For all non-NE, let a player improve by lazy convertibility.

The NE are the sinks of lazy improvement (LI).

⇒ LI ⊆ BR so every NE is a sink of LI .

⇐ If a player can improve, she can do it lazily.

Theorem (Kukushkin, 2002)

For games with R-valued payoffs, LI terminates.

Theorem (New)

Consider a game with n nodes.

I If no player has a preference path longer than h, LI terminates
within h · n steps.

I If a player has no preference path longer than h, she makes
less than h · n steps in any LI sequence.
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Idea of the proof
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Which player avoids which outcomes (multiset):
x y z t

a 1 0 1 3
b 0 2 1 0

I Lazy convertibility by Player a doesn’t affect b’s multiset.

I LI by a player decreases her multiset (wrt her preference).

I ⇒ self-stabilzation of players with acyclic preference.
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Some properties of lazy improvement

1. No probability.

2. Acyclic preferences (rationality) suffices for termination.

3. Quick stabilisation.

4. Rational players stabilize regardless of opponents.

5. LI step independent of previous LI steps.

6. A players needn’t know she has opponents.

7. No need to know all ones options: maximizing not required.

8. A new proof technique for existence of NE.
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Lazy improvement in infinite sequential games



12

Infinite sequential games
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I No leaf: outcomes are attached to infinite paths.

I Strategy and NE are defined as in the finite case.

Proposition

If the player preferences are all acyclic, so is lazy improvement.
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Lazy improvement has ω-cycles
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The limit of the sequence is its first element.

In the remainder, the game has finite branching, finitely many
players, and continuous real-valued payoffs.

Theorem
Lazy ε-improvement terminates on ε-NE.
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Deepening lazy improvement

Algorithm:

1. n := 1;

2. Let s be any strategy profile;

3. Repeat {
4. Let the players improve s by lazy convertibility above depth n,

until some stable sn;

5. s := sn;

6. n := n + 1; }

Theorem
All accumulation points of (sn)n∈N are NE.
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Conclusion

Existence of randomized NE (1950) raised two issues:
randomization and convergence.

Kukushkin (2002) addressed these issues partially: LI in finite
sequential games with R-valued payoffs terminates on NE.

We contributed on

I Finite games: termination bounds + self-stablization.

I Infinite games: several directions, assuming continuity, finite
branching and number of players.
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Fair lazy improvement

A sequence of improvements is fair if the following holds: for all
positive reals r, if improvements by more than r are possible
infinitely often during the sequence, they also occur infinitely often.

Proposition

I One accumulation point of fair lazy improvement is NE.

I If the accumulation points are finitely many, there are all NE.

I If the payoffs are (suitably) Lipschitz, the points are all NE.

Open question: are all accumulation points of fair LI NE?
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Ordinal lazy improvement

Algorithm:

1. Let s be any strategy profile;

2. Repeat {
3. Let the players improve s lazily;

4. Let s be an accumulation point of the sequence;}

A ∆0
2 set is a countable union of closed sets and is also a

countable intersection of open sets.

Proposition

If the players have ∆0
2 boolean objectives, the sequence reaches an

NE after a countable ordinal of steps.


