Cycle Detection in Computation-Tree Logic

Gaelle Fontaine\(^1\) Fabio Mogavero\(^2\) Aniello Murano\(^3\) Giuseppe Perelli\(^2\)
Loredana Sorrentino\(^3\)

\(^1\)Universidad de Chile, \(^2\)University of Oxford, \(^3\)University of Naples

GandALF 2016
Catania, September 16th
Everybody knows Model Checking

How to check system correctness.

- **System** represented as Mathematical Structure \mathcal{K} (e.g., Kripke structure, Labeled transition system);
- **Desired behavior** represented as Logic Formula φ (e.g., Modal Logic, LTL, CTL, CTL*);
- The systems meets the behavior if (and only if) $\mathcal{K} \models \varphi$.

The ability of checking a behaviour depends on the expressiveness of the logics. Solution techniques often reduce to find cycle properties (e.g., lasso paths). Temporal logics usually don't have power to explicitly denote cyclic behaviour. Here: we introduce and investigate a temporal logic that can explicitly express the existence (or non existence!) of a cycle.
Everybody knows Model Checking

How to check system correctness.

- **System** represented as Mathematical Structure \mathcal{K} (e.g., Kripke structure, Labeled transition system);
- **Desired behavior** represented as Logic Formula φ (e.g., Modal Logic, LTL, CTL, CTL*);
- The systems meets the behavior if (and only if) $\mathcal{K} \models \varphi$.

The ability of checking a behaviour depends on the expressiveness of the logics. Solution techniques often reduce to find cycle properties (e.g., lasso paths).
Everybody knows Model Checking

How to check system correctness.

- **System** represented as Mathematical Structure \mathcal{K} (e.g., Kripke structure, Labeled transition system);
- **Desired behavior** represented as Logic Formula φ (e.g., Modal Logic, LTL, CTL, CTL*);
- The systems meets the behavior if (and only if) $\mathcal{K} \models \varphi$.

The ability of checking a behaviour depends on the expressiveness of the logics. Solution techniques often reduce to find cycle properties (e.g., lasso paths).

Temporal logics usually don’t have power to explicitly denote cyclic behaviour.
Everybody knows Model Checking

How to check system correctness.

- **System** represented as Mathematical Structure \mathcal{K} (e.g., Kripke structure, Labeled transition system);
- **Desired behavior** represented as Logic Formula φ (e.g., Modal Logic, LTL, CTL, CTL^*);
- The systems meets the behavior if (and only if) $\mathcal{K} \models \varphi$.

The ability of checking a behaviour depends on the expressiveness of the logics. Solution techniques often reduce to find cycle properties (e.g., lasso paths).

Temporal logics usually don’t have power to explicitly denote cyclic behaviour.

Here: we introduce and investigate a temporal logic that can explicitly express the existence (or non existence!) of a cycle.
A Kripke structure is a tuple $\mathcal{K} = \langle \text{AP}, \text{W}, \text{R}, \text{L}, w_I \rangle$ with:

- $\text{AP} = \{p, q\}$;
- $\text{W} = \{w_0, w_1, w_2\}$;
- $\text{R} \subseteq \text{W} \times \text{W}$;
- $\text{L} : \text{W} \to 2^{\text{AP}}$;
- $w_I \in \text{W}$.
Basic notions

Path

A path in \mathcal{K} is an infinite sequence w_0, w_1, \ldots such that $(w_i, w_{i+1}) \in R$, for all $i \in \mathbb{N}$.
Basic notions

Path

A path in \mathcal{K} is an infinite sequence w_0, w_1, \ldots such that $(w_i, w_{i+1}) \in R$, for all $i \in \mathbb{N}$.

Cycle

A cycle in \mathcal{K} is a path w_0, w_1, \ldots such that w_0 occurs infinitely many times.
Outline

1. Computation-Tree Logic with Cycle Detection
2. Model-theoretic properties
3. Decision problems
4. Conclusions and future works
Outline

1. Computation-Tree Logic with Cycle Detection
2. Model-theoretic properties
3. Decision problems
4. Conclusions and future works
Computation-Tree Logic with Cycle Detection

Syntax

\[\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid E\psi \mid A\psi \mid E^\bigcirc \psi \mid A^\bigcirc \psi \]

\[\psi ::= \phi \mid \neg \psi \mid \psi \land \psi \mid \psi \lor \psi \mid X\psi \mid \psi U \psi \]

Two new path quantifiers \(E^\bigcirc \) and \(A^\bigcirc \), predicating over cycles.

Semantics

- \(\mathcal{K}, w \models E^\bigcirc \psi \) if there exists a cycle \(\pi \) starting from \(w \) such that \(\mathcal{K}, \pi \models \psi \);
- \(\mathcal{K}, w \models A^\bigcirc \psi \) if, for all cycles \(\pi \) starting from \(w \), it holds that \(\mathcal{K}, \pi \models \psi \).
Example (Parity Games)

- V_0: nodes of player 0;
- V_1: nodes of player 1;
- $E \subseteq (V_0 \cup V_1) \times (V_0 \cup V_1)$;
- $p : (V_0 \cup V_1) \to \mathbb{N}$;
- An outcome of the game is a (infinite) path π determined by moves of the players in their respective nodes.

π is **-winning** for Player 0 if the biggest priority occurring infinitely often is even.
π is **prompt winning** for Player 0 if every occurrence of an infinitely occurent odd number k is followed by a bigger even number n with **bounded delay**.
Example (Parity Games)

- V_0: nodes of player 0;
- V_1: nodes of player 1;
- $E \subseteq (V_0 \cup V_1) \times (V_0 \cup V_1)$;
- $p : (V_0 \cup V_1) \to \mathbb{N}$;
- An outcome of the game is a (infinite) path π determined by moves of the players in their respective nodes.

π is winning for Player 0 if the biggest priority occurring infinitely often is even.

π is prompt winning for Player 0 if every occurrence of an infinitely occurent odd number k is followed by a bigger even number n with bounded delay.

A strategy for Player 0 is a function mapping each node in V_0 to an outgoing arrow.
A strategy is winning if it enforces only winning paths.
A strategy is prompt winning if it enforces only prompt winning paths.
Strategy projection for Player 0 produces a Kripke structure;

- The paths in this structure are the ones enforced by Player 0;
- We can use CTL^* and CTL^\ominus to represent properties of the strategy in the game.
Strategy projection

- Strategy projection for Player 0 produces a Kripke structure;
- The paths in this structure are the ones enforced by Player 0;
- We can use CTL^* and $\text{CTL}^\circlearrowright$ to represent properties of the strategy in the game.

Winning strategy

$$\varphi^{par} = A \land_{k \equiv 2^1} (\text{GF} k \rightarrow \text{GF}(k + 1))$$
Strategy projection for Player 0 produces a Kripke structure;

- The paths in this structure are the ones enforced by Player 0;
- We can use CTL^* and CTL^\square to represent properties of the strategy in the game.

Winning strategy

$$\varphi^{par} = A \land_{k\equiv 2^1} (GFk \rightarrow GF(k + 1))$$

Prompt winning strategy

$$\varphi^{par} \land \neg (\bigvee_{n\equiv 2^0} E (\bigvee_{k<n, k\equiv 2^1} (GFk \land G(k \rightarrow G\neg (K + 1) \cup E\Diamond G\neg (k + 1)))))$$
Outline

1. Computation-Tree Logic with Cycle Detection
2. Model-theoretic properties
3. Decision problems
4. Conclusions and future works
Bisimulation?

Theorem

CTL\(\star\) is not invariant under tree-unwinding
CTL\(\star\) is not invariant under bisimulation
Bisimulation?

Figure: A Kripke structure \mathcal{K}

Theorem

CTL \star is not invariant under tree-unwinding

CTL \star is not invariant under bisimulation
Bisimulation?

Figure: A Kripke structure \mathcal{K}

Figure: Tree unwinding $T_\mathcal{K}$
Bisimulation?

Figure: A Kripke structure \mathcal{K}

Figure: Tree unwinding $T_{\mathcal{K}}$

$\mathcal{K}, w_0 \models E \Diamond T$

$T_{\mathcal{K}}, w_0 \not\models E \Diamond T$
Bisimulation?

Figure: A Kripke structure \mathcal{K}

$w_0 \xrightarrow{} w_0 \xrightarrow{} w_0 \xrightarrow{} \ldots$

Figure: Tree unwinding $T_\mathcal{K}$

$\mathcal{K}, w_0 \models E \Diamond T$

$T_\mathcal{K}, w_0 \not\models E \Diamond T$

Theorem

- $CTL^{\star} \not\text{is invariant under tree-unwinding}$
- $CTL^{\star} \not\text{is invariant under bisimulation}$
Finite-Model Property?

For every path, at every time-point, there not exist a cycle.

There is no loop for every reachable state \Rightarrow the formula is satisfiable only on infinite-state Kripke structures.

Theorem CTL^* $\not\models$ does not have the finite-model property.
Finite-Model Property?

\[\AG \neg \exists \top \]

For every path, at every time-point, there not exist a cycle.
Finite-Model Property?

\[\text{AG}\neg \text{E} \circ \top \]

For every path, at every time-point, there not exist a cycle.
There is no loop for every reachable state \(\Rightarrow\) the formula is satisfiable only on infinite-state Kripke structures.
Finite-Model Property?

\[\mathsf{AG} \neg \mathsf{E} \diamond \top \]

For every path, at every time-point, there not exist a cycle. There is no loop for every reachable state \(\Rightarrow \) the formula is satisfiable only on infinite-state Kripke structures.

Theorem

\(\mathsf{CTL}^\circ \) does not have the finite-model property.
Expressiveness

Theorem

\(\text{CTL}^\star \text{ is strictly more expressive than } \text{CTL}^\star \text{.} \)
Expressiveness

Theorem

\[\text{CTL}^* \text{ is strictly more expressive than } \text{CTL}^* \text{.} \]

Proof intuition

\[\text{CTL}^* \text{ is invariant under bisimulation.} \]
Expressiveness

Theorem

$CTL^\star \bowtie$ is strictly more expressive than CTL^\star.

Proof intuition

CTL^\star is invariant under bisimulation.

Theorem

$CTL^\star \bowtie$ is expressively incomparable with μCalculus.
Expressiveness

Theorem

\[\text{CTL}^* \ \text{is strictly more expressive than } \text{CTL}^\circ . \]

Proof intuition

\[\text{CTL}^* \ \text{is invariant under bisimulation}. \]

Theorem

\[\text{CTL}^* \ \text{is expressively incomparable with } \mu \text{Calculus}. \]

Proof intuition

\[\mu \text{Calculus} \ \text{is invariant under bisimulation, but } \text{CTL}^* \ \text{cannot express all regular expressions, e.g., the counting-by-two}. \]
Cycle-Bisimulation

Definition

Cycle-Bisimulation

Two Kripke structures \mathcal{K}_1 and \mathcal{K}_2 are cycle-bisimilar if there exists a bisimulation relation $B \subseteq W_{\mathcal{K}_1} \times W_{\mathcal{K}_2}$ on their states such that, for all $(w_1, w_2) \in B$:

- For every cycle π_1 starting from w_1 there exists a cycle π_2 starting from w_2 bisimilar to π_1 state-by-state;
- For every cycle π_2 starting from w_2 there exists a cycle π_1 starting from w_1 bisimilar to π_2 state-by-state.

Theorem

$CTL^\star \\mathcal{L}$ is invariant under cycle-bisimulation.
Cycle-Bisimulation

Definition

Cycle-Bisimulation

Two Kripke structures \mathcal{K}_1 and \mathcal{K}_2 are **cycle-bisimilar** if there exists a bisimulation relation $B \subseteq W_{\mathcal{K}_1} \times W_{\mathcal{K}_2}$ on their states such that, for all $(w_1, w_2) \in B$:

1. For every cycle π_1 starting from w_1 there exists a cycle π_2 starting from w_2 bisimilar to π_1 *state-by-state*;
2. For every cycle π_2 starting from w_2 there exists a cycle π_1 starting from w_1 bisimilar to π_2 *state-by-state*.

Theorem

CTL^\star is **invariant** under cycle-bisimulation.
Tree with Back Edges

A simple tree $\mathcal{T} = (V, E)$
A simple tree $\mathcal{T} = (V, E)$

Plus a partial mapping f from nodes to back edges such that:

- $f(w)$ is an ancestor of w;
- Back edges do not overlap.
Tree-like unwinding

Theorem

For every Kripke structure \mathcal{K}, there exists a tree with back edges $T_\mathcal{K}$ which is cycle-bisimilar.
Tree-like unwinding

Theorem

For every Kripke structure \mathcal{K}, there exists a tree with back edges $T_\mathcal{K}$ which is cycle-bisimilar.

An example
Outline

1. Computation-Tree Logic with Cycle Detection
2. Model-theoretic properties
3. Decision problems
4. Conclusions and future works
Theorem

The model-checking problem for CTL^\star is PSpace-Complete w.r.t. the formula and $\text{NLogSpace-Complete}$ w.r.t. the data complexity.

Proof idea

Bottom-up automata-theoretic technique construction borrowed from CTL^\star. The cases $E \otimes \psi$ and $A \otimes \psi$ are similar to $E \psi$ and $A \psi$ with an additional check that the initial state occurs infinitely often. It suffices to intersect the automaton $N_{E \psi} K_{\psi}$ with a suitably defined Büchi word automaton for this additional check.
Model Checking

Theorem

The model-checking problem for CTL^\wedge is PSpace-Complete w.r.t. the formula and NLogSpace-Complete w.r.t. the data complexity.

Proof idea

Bottom-up automata-theoretic technique construction borrowed from CTL^\wedge. The cases $E\Diamond \psi$ and $A\Diamond \psi$ are similar to $E\psi$ and $A\psi$ with an additional check that the initial state occurs infinitely often. It suffices to intersect the automaton $N^E\psi_K$ with a suitably defined Büchi word automaton for this additional check.
The CTL^* automata-technique cannot be borrowed as there is no tree-model property. However, exploiting the tree-like model property and cycle-bisimulation invariance we can build a two-way parity tree automaton A_{φ} that:

- Is of size double-exponential w.r.t. φ;
- Recognises all the tree structures that can be extended into the tree-like models of φ;
- The back-and-forth reading of the tree is used to correctly guess the back edge of the model.

Theorem

The satisfiability problem for $\text{CTL}^* \square$ can be solved in 3ExpTime and it is 2ExpTime-Hard.
Satisfiability

Problem

The CTL^\star automata-technique cannot be borrowed as there is no tree-model property.

However

Exploiting the tree-like model property and cycle-bisimulation invariance we can build a two-way parity tree automaton A_φ that:

- Is of size double-exponential w.r.t. φ;

Theorem

The satisfiability problem for $\text{CTL}^\star \text{-}\llcorner$ can be solved in 3ExpTime and it is 2ExpTime-Hard.
The satisfiability problem for CTL* cannot be borrowed as there is no tree-model property. However, by exploiting the tree-like model property and cycle-bisimulation invariance, we can build a two-way parity tree automaton A_φ that:

- Is of size double-exponential w.r.t. φ;
- Recognises all the tree structures that can be extended into the tree-like models of φ;

Theorem: The satisfiability problem for CTL* can be solved in 3ExpTime and it is 2ExpTime-hard.
Satisfiability

Problem

The CTL^* automata-technique cannot be borrowed as there is no tree-model property.

However

Exploiting the tree-like model property and cycle-bisimulation invariance we can build a two-way parity tree automaton A_φ that:

- Is of size double-exponential w.r.t. φ;
- Recognises all the tree structures that can be extended into the tree-like models of φ;
- The back-and-forth reading of the tree is used to correctly guess the back edge of the model.

Theorem

The satisfiability problem for $\text{CTL}^* \Rightarrow$ can be solved in 3ExpTime and it is 2ExpTime-Hard.
The satisfiability problem for $\text{CTL}^\star \text{rosse}$ cannot be borrowed as there is no tree-model property.

However, exploiting the tree-like model property and cycle-bisimulation invariance we can build a two-way parity tree automaton A_φ that:

- Is of size double-exponential w.r.t. φ;
- Recognises all the tree structures that can be extended into the tree-like models of φ;
- The back-and-forth reading of the tree is used to correctly guess the back edge of the model.

Theorem

The satisfiability problem for CTL^\star \$ \text{rosse}$ can be solved in 3ExpTime and it is 2ExpTime-Hard.
Satisfiability

Problem

The CTL^* automata-technique cannot be borrowed as there is no tree-model property.

However

Exploiting the tree-like model property and cycle-bisimulation invariance we can build a two-way parity tree automaton A_φ that:

- Is of size double-exponential w.r.t. φ;
- Recognises all the tree structures that can be extended into the tree-like models of φ;
- The back-and-forth reading of the tree is used to correctly guess the back edge of the model.

Theorem

The satisfiability problem for CTL^* can be solved in 3ExpTime and it is 2ExpTime-Hard.
Outline

1. Computation-Tree Logic with Cycle Detection
2. Model-theoretic properties
3. Decision problems
4. Conclusions and future works
Conclusion

In this paper we ...

- Introduced CTL^\diamondsuit to explicitly quantify over cycles in structures;
Conclusion

In this paper we ...

- Introduced CTL^* to explicitly quantify over cycles in structures;
- Compared its expressive power with well known formalisms like CTL^* and $\mu\text{Calculus}$;
Conclusion

In this paper we ...

- Introduced CTL^* to explicitly quantify over cycles in structures;
- Compared its expressive power with well known formalisms like CTL^* and $\mu\text{Calculus}$;
- Investigated on its model properties like invariance under bisimulation;
Conclusion

In this paper we ...

- Introduced CTL^\star to explicitly quantify over cycles in structures;
- Compared its expressive power with well known formalisms like CTL^\star and $\mu\text{Calculus}$;
- Investigated on its model properties like invariance under bisimulation;
- Addressed both Model-Checking and Satisfiability problems.
Future works

• Fill the gap in complexity for the satisfiability problem;
• Further syntactic extension in which the cycle symbol is atomic (work in progress);
• Quantifying over cycles in logics for open systems (e.g., ATL*, and SL).
Thank you!