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Deduction systems

Axiomatic deduction systems

Systems in Hilbert style [Frege, Russell, Heyting]:

system: axioms (many) + rule (one)

proof – finite sequence of formulas

Non-Hilbertian systems

Gentzen’s calculus of sequents

analytic tableaux – Beth 1955 and Hintikka 1955

Diagrams – Rasiowa and Sikorski 1960
Tableaux – Smullyan 1968 and Fitting 1990

Smullyan tableaux and Rasiowa-Sikorski diagrams are dual.
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Dual Tableaux – inspired by Rasiowa-Sikorski diagrams

The rules usually have the form:
Φ

Φ1 | . . . |Φn

’,’ – disjunction ’|’ – conjunction

X is valid iff the meta-disjunction of formulas from X is valid

The rules are semantically invertible, that is for every set X of
formulas:

X ∪ Φ is valid iff all X ∪ Φi are valid

Axioms: some valid sets of formulas

Proof: a decomposition tree

Provability of a formula: existence of a closed proof tree
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Dual tableau for first-order logic with identity

Decomposition rules for connectives:

(RS∨)
ϕ ∨ ψ
ϕ,ψ

(RS¬∨)
¬(ϕ ∨ ψ)

¬ϕ | ¬ψ

(RS¬)
¬¬ϕ
ϕ

Decomposition rules for quantifiers:

(RS∀)
∀xϕ(x)

ϕ(z)
(RS¬∀)

¬∀xϕ(x)

¬ϕ(z),¬∀xϕ(x)

z is a new variable z is any variable
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Dual tableau for first-order logic with identity

Specific rule for identity:

(RS=)
ϕ(x)

x = y , ϕ(x) |ϕ(y), ϕ(x)

ϕ is an atomic formula, y is any variable

Axiomatic sets:
ϕ,¬ϕ

x = x
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Example ¬∀x(ϕ ∨ ψ(x)) ∨ (ϕ ∨ ∀xψ(x))

¬∀x(ϕ ∨ ψ(x)) ∨ (ϕ ∨ ∀xψ(x))

?
(RS∨) twice

¬∀x(ϕ ∨ ψ(x)), ϕ, ∀xψ(x)

?(RS∀) with a new variable z

¬∀x(ϕ ∨ ψ(x)), ϕ, ψ(z)

?(RS¬∀) with variable z

¬(ϕ ∨ ψ(z)), ϕ, ψ(z), . . .

��	 @@R(RS¬∨)

¬ϕ,ϕ, . . .
closed

¬ψ(z), ψ(z), . . .
closed
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Relational logics

The common language of most dual tableaux is

the logic RL of binary relations.

Formal features of RL

Formulas are intended to represent statements saying that two
objects are related.

Relations are specified in the form of relational terms.

Terms are built from relational variables and relational
constants with relational operations.
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Relational logics – why?

Formal motivation

The relational logic RL is the logical representation of

REPRESENTABLE RELATION ALGEBRAS

introduced by Tarski.

Representable Relation Algebras RRA:

Relation algebras that are isomorphic to proper algebras of
binary relations

Not all relation algebras are representable

RRA is not finitely axiomatizable

RRA is a discriminator variety with a recursively enumerable
but undecidable equational theory
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Relational logics – why?

Possible answer

Broad applicability.

Elements of relational structures can be interpreted as
possible worlds, points (intervals) of time, states of a
computer program, etc.

We gain compositionality: the relational counterparts of the
intensional connectives become compositional, that is the
meaning of a compound formula is a function of meaning of
its subformulas.

It enables us to express an interaction between information
about static facts and dynamic transitions between states in a
single uniform formalism.
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Relational logics – why?

Advantages of the relational logic

A generic logic suitable for representing within a uniform
formalism the three basic components of formal systems:
syntax, semantics, and deduction apparatus.

A general framework for representing, investigating,
implementing, and comparing theories with incompatible
languages and/or semantics.

A great variety of logics can be represented within the
relational logic, in particular modal, temporal, spatial,
information, program, as well as intuitionistic, and
many-valued, among others.
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Relational dual tableaux – why?

Possible answer

Methodology of relational dual tableaux enables us to build proof
systems for various theories in a systematic modular way:

A dual tableau for the classical relational logic of binary
relations is a core of most of the relational proof systems.

For any particular logic some specific rules are designed and
adjoined to the core set of rules.

Relational dual tableau systems usually do more: they can be
used for proving entailment, model checking, and satisfaction
in finite models.
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Advantages of relational dual tableaux

We need not implement each deduction system from scratch.

We only extend the core system with a module corresponding
to a specific part of a logic under consideration.
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Relational logic RL of binary relations

Language

object variables: x , y , z , . . .

relational variables: P1,P2, . . .

relational constants: 1, 1′

relational operations: −,∪,∩,−1 , ;

Terms and formulas

Atomic term: a relational variable or constant

Compound terms: −P, P ∪ Q, P ∩ Q, P−1, P; Q

Formulas: xTy
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Relational logic RL

Relational model: M = (U,m)

U – a non-empty set

m(P) – any binary relation on U

m(1) = U × U, m(1′) = IdU

m(−Q) = (U × U) \m(Q)

m(Q ∪ T ) = m(Q) ∪m(T )

m(Q ∩ T ) = m(Q) ∩m(T )

m(Q−1) = m(Q)−1

m(Q; T ) = m(Q); m(T ) =

{(x , y) ∈ U × U : ∃z ∈ U((x , z) ∈ m(Q) ∧ (z , y) ∈ m(T ))}.
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Relational logic RL

Valuation

Any function v that assigns object variables to elements from U.

Semantics

Satisfaction, M, v |= xTy : (v(x), v(y)) ∈ m(T )

Truth, M |= xTy : satisfaction by all valuations in M

Validity: truth in all models.
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Dual tableau for the relational logic RL

Decomposition rules:

(∪)
x(R ∪ S)y

xRy , xSy
(−∪)

x−(R ∪ S)y

x−Ry | x−Sy

(; )
x(R; S)y

xRz , x(R; S)y | zSy , x(R; S)y
(−; )

x−(R; S)y

x−Rz , z−Sy

z is any variable z is a new variable
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Dual tableau for the relational logic RL

Specific rules:

(1′1)
xRy

xRz , xRy | y1′z , xRy
(1′2)

xRy

x1′z , xRy | zRy , xRy

z is any object variable, R is an atomic term

Axioms:

xTy , x−Ty

x1y

x1′x
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Main Results

Soundness and Completeness

For every RL-formula ϕ the following conditions are equivalent:

1 ϕ is RL-valid.

2 ϕ is RL-provable.

The connection between RL and RRA

For every relational term R the following conditions are equivalent,
for all object variables x and y :

R = 1 is RRA-valid.

xRy is RL-valid.
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Example - the proof of 1′;R ⊆ R

x(−(1′; R) ∪ R)y

?
(∪)

x−(1′; R)y , xRy

?
(−; )

x−1′z , z−Ry , xRy
����

HHHj(1′2)

x1′z , x−1′z , . . .
closed

z−Ry , zRy , . . .
closed
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Entailment in RL

Fact [Tarski 1941]

R1 = 1, . . . ,Rn = 1 imply R = 1

iff

(1;−(R1 ∩ . . . ∩ Rn); 1) ∪ R = 1.

Entailment can be expressed in RL:

xR1y , . . . , xRny imply xRy

iff

x(1;−(R1 ∩ . . . ∩ Rn); 1) ∪ R)y is RL-valid.
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Model Checking and Satisfaction Problem

Problem

Let M = (U,m) be a finite RL-model, ϕ = xRy be an RL-formula,
and v be a valuation in M.

1 Model checking: M |= ϕ?

2 Satisfaction problem: M, v |= ϕ?

How to verify?

Define the logic RLM,ϕ coding M and ϕ

Construct dual tableau for RLM,ϕ

For details see the book [Or lowska-Golińska-Pilarek 2011].
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Alternative versions of the relational logic RL

Most of the non-classical logics can be translated either into a
fragment or an extension of the relational logic RL.

Possible fragments of RL

without the relational constants 1 and 1′

some restriction on terms built with the composition operation

Possible extensions of RL

with object constants and/or object operations

more relational constants and/or relational operations

additional n-ary relational symbols, for n > 2

Other: any combination of the above without object/relational
variables (only object/relational constants).
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Relational representation of a non-classical logic L

Development of a relational semantics for L (e.g., Kripke
semantics).

Development of a relational logic RLL appropriate for a logic
L.

Development of a validity preserving translation, τ , from the
language of logic L into the language of logic RLL.

Construction of a dual tableau for RLL such that for every
formula ϕ of L, ϕ is valid in L iff its translation τ(ϕ) is
provable in RLL.

Construction of a dual tableau for extensions of RLL used for
verification of entailment, for model checking, and for
verification of satisfiability in the logic L.
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The general relational methodology

Relational dual tableaux have been constructed for a great variety
of non-classical logics:

modal, temporal, epistemic, dynamic,

intuitionistic and relevant,

many-valued, fuzzy, rough-set-based, among others.

Disadvantages

The general relational methodology does not guarantee that the
constructed system will be a decision procedure.

In most cases it is not, while logics for which systems are
constructed are decidable.
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Towards decision procedures

Possible approaches

Restricted relational language and/or applications of standard
RL-rules that can generate infinite trees, for instance:

The rule (; ) cannot precede an application of the rule (−;)
and a chosen variable z must occur on a branch.
(Used in systems for simple fragments of RL, see [OGP11].)
A relational language is restricted: only special forms of
composition terms are allowed; some additional requirements
on applications of standard RL-rules are assumed.
(Used in systems for those fragments of RL that can be used
to express modal and description logics. For details see papers
of Cantone, Nicolosi-Asmundo, and Or lowska.)
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Towards decision procedures

Possible approaches

New rules instead of ’bad’ rules.

External techniques typical for tableaux: backtracking,
backjumping, simplifications.

Any combination of the above.

Objective

To establish a general methodology for constructing relational
decision procedures.
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Example of a promising approach

Relational decision procedures presented in the paper

J. Golińska-Pilarek, T. Huuskonen, and E. Munoz-Velasco, ”Relational dual tableau decision procedures and their

applications to modal and intuitionistic logics”, Annals of Pure and Applied Logics 165(2), 2014, 409–427, doi:

10.1016/j.apal.2013.06.003

can serve as:

decision procedures for modal and intuitionistic logics,

a starting point for a general relational decision procedure.
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The main features of the approach

Only restricted forms of relational terms with composition are
allowed.

New rules for the composition operation.

New rules corresponding to specific properties of the
accessibility relation.

Additional external constraints on applications of rules.

Exactly one finite tree for each formula.

Each of the systems is not only a base for an algorithm
verifying validity of a formula, but is itself a decision
procedure, with all the necessary bookkeeping built into the
rules.
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A fragment of the relational logic: RL∗

Language of RL∗

object variables: OV = {z0, z1, . . .}
relational variables: RV = {P1,P2, . . .}
the single relational constant: R

relational operations: {−,∩, ;}.

Relational terms of RL∗

Relational variables are terms.

If S ,T are terms, then so are −S ,S ∩ T , (R ; T ).

Relational formulas are of the form znTz0, for n ≥ 1.

Terms and formulas are uniquely ordered.

J. Golińska-Pilarek, presenting: M. Zawidzki Relational decision procedures



A fragment of the relational logic: RL∗

Important feature

The relational constant R and the composition operator ; are
syntactically inseparable; the composition operator allows only
terms with R on the left.

R alone is not a term.

Only the object on the left is significant in a formula; the
right-hand side has the fixed dummy variable.

Why RL∗?

Such a restricted relational language is rich enough to express
many non-classical logics, e.g., some modal and intuitionistic.
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A fragment of the relational logic: RL∗

Semantics

Relational models, satisfaction, truth, and validity are defined in a
standard way.

Thus, models are of the form (U,m) and such that:

Relational variables are interpreted as right ideal relations.

m(R) may satisfy some additional conditions (reflexivity,
transitivity, heredity).

m satisfies the standard conditions of RL-models.
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New rules

All the systems contain the following rules:

(−), (∩), (−∩) – old rules in the new fashion

(R;) – the new rule for terms built with the composition
operator

Given a logic, its system may contain the rules:

(ref) – a new rule for reflexivity

(tran) – a new rule for transitivity

(her) – a new rule for heredity condition.
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Additional requirements

In the definition of a decomposition tree we additionally assume:

1 Whenever several rules are applicable to a node, the first
possible schema from the following list is chosen: (−), (−∩),
(∩), (ref), (her), (tran), and (R;).
Within the schema, the instance with the minimal formula is
applied.

2 The rule (R; ) can be applied to a node provided that its
proper part is not a subcopy of any of its predecessor nodes.

3 On a branch the rule (ref) can be applied to a given formula
at most once.
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The rule (R ;)

(R;)
X ∪ {zkAmz0 | m ∈ M} ∪ {zk−(R ; Si )z0 | i ∈ I} ∪ {zk(R ; Tj)z0 | j ∈ J}

X ∪ {zkAmz0 | m ∈ M} ∪ {zki−Siz0 | i ∈ I} ∪ {zki Tjz0 | i ∈ I , j ∈ J}

1 k ≥ 1,

2 zkTz0 /∈ X ,

3 M, I , J are sets of indices, I 6= ∅,
4 Am is a literal and Si ,Tj are terms,

5 N = {ki | i ∈ I} is the set of consecutive natural numbers
that do not occur in the premise.
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Specific rules

(ref)
X ∪ {zk(R s ; T )z0}

X ∪ {zk(R s ; T )z0} ∪ {zk(R i ; T )z0 | i ∈ {0, . . . , s − 1}}

T is a non-compositional term,

For all t > s, it holds that zk(R t ; T )z0 /∈ X .

(tran)
X ∪ {zk(R ; T )z0}

X ∪ {zk(R ; T )z0} ∪ {zk(R2 ; T )z0}
,

T is a non-compositional term.

(her)
X ∪ {zk−(R ; T )z0} ∪ {zk−Piz0 | i ∈ I}

X ∪ {zk−(R ; T )z0} ∪ {zk−Piz0 | i ∈ I} ∪ {zk(R ;−Pi )z0 | i ∈ I} ,

zk−Pz0 /∈ X for any relational variable P.
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Main theorems

Termination and uniqueness

Every formula has exactly one finite tree.

Soundness and completeness

For every formula ϕ:

ϕ is valid if and only if ϕ is provable.
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Example of applications – modal logics

RL∗ can be applied as for the relational representation of modal
logics of transitive or reflexive frames.

Let L be a modal logic. Then, a relational logic for L is RLL
∗

determined by the following translation.

Translation of a standard modal logic L into terms of RLL
∗

τ(pi ) = Pi , for any pi ∈ V, i ≥ 1

τ(¬ϕ) = −τ(ϕ)

τ(ϕ ∧ ψ) = τ(ϕ) ∩ τ(ψ)

τ(〈R〉ϕ) = R ; τ(ϕ)

τ([R]ϕ) = −(R ;−τ(ϕ))

RLL
∗-models must satisfy all the constraints imposed on R in

L-models.
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Main theorems

The translation τ preserves validity:

Translation Theorem

For every L-formula ϕ:

ϕ is L-valid if and only if z1τ(ϕ)z0 is RLL
∗-valid.

Let L be a modal logic of reflexive or transitive frames.

A dual tableau for L

A dual tableau for RL∗ with the rules (ref) or (tran).

Thus, we obtain:

Deterministic decision procedures

An RLL
∗-dual tableau is a deterministic decision procedure for a

logic L.
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Example of applications – intuitionistic logic INT

Logic INT

INT-language = the language of the classical propositional
logic.

INT-models are Kripke structures (U,R,m) such that:

R is a reflexive and transitive relation on U
For all s, s ′ ∈ U:

(her) If (s, s ′) ∈ R and s ∈ m(p), then s ′ ∈ m(p).

Satisfaction

M, s |= p iff s ∈ m(p)

M, s |= ¬ϕ iff for every s ′ ∈ U, if (s, s ′) ∈ R, then M, s ′ 6|= ϕ

M, s |= (ϕ→ ψ) iff for every s ′ ∈ U, if (s, s ′) ∈ R and
M, s ′ |= ϕ, then M, s ′ |= ψ.
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Relational representation of the intuitionistic logic INT

The relational logic RL∗INT

RL∗INT-language is the RL∗-language,

RL∗INT-models are RL∗-models with R interpreted as a
reflexive and transitive relation satisfying heredity condition:

(her’) If (x , y) ∈ m(R) and (x , z) ∈ m(P), then (y , z) ∈ m(P).

Translation ι

ι(pi ) = Pi , for every propositional variable pi

ι(¬ϕ) = −(R ; ι(ϕ))

ι(ϕ→ ψ) = −(R ; (ι(ϕ) ∩ −ι(ψ))).
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Relational decision procedure for the logic INT

Translation Theorem

For every INT-formula ϕ:

ϕ is INT-valid if and only if z1ι(ϕ)z0 is RLINT
∗-valid.

RL∗INT-dual tableau

A dual tableau for RL∗ with the rules (ref), (tran), (her).

Relational decision procedure for INT

RL∗INT-dual tableau is a deterministic decision procedure for INT.
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Further results

This methodology has been extended to multimodal logics with
more than one accessibility relation and some description logics in
the paper:

D. Cantone, J. Golińska-Pilarek, M. Nicolosi-Asmundo. A relational dual

tableau decision procedure for multimodal and description logics, in:

M. Polycarpou et al. (eds.), Hybrid Artificial Intelligence Systems, Springer,

LNCS 8480, 2014, 466477.

The most recent research

Relational decision procedure for the qualitative modal logic of
order of magnitude reasoning with distance relation – OMRD.
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Qualitative Reasoning

QR is an approach within Artificial Intelligence for dealing with
commonsense knowledge about the physical world.

The crucial issue of QR is to represent and reason about
continuous properties of objects in a symbolic but human-like
manner; with no reliance on numerical information.

Given a context, qualitative representation makes only as many
distinctions as necessary to identify objects, events, situations, etc.

It is an adequate tool for dealing with situations in which
information is not sufficiently precise (e.g., numerical values are
not available).
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Motivations for QR

Human knowledge is almost always incomplete.

People often draw useful conclusions about the real world
without mathematical equations or theories.

They figure out what is happening and how they can affect it,
even if they have less precise data than would be required to
use traditional, purely quantitative and numerical methods.

Scientists use qualitative reasoning when they initially try to
understand a problem, when they set up formal representation
for a particular task, and when they interpret quantitative
calculation or simulation.
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Order-of-magnitude reasoning

Order-of-magnitude Reasoning (OMR) is an approach within QR.

The order-of-magnitude approach enables us to reason in terms of
relative magnitudes of variables obtained by comparisons of the
sizes of quantities.

OMR methods of reasoning are situated midway between
numerical methods and purely qualitative formalisms.
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Order-of-magnitude reasoning

OMR-approaches:

Absolute Order of Magnitude (AOM) – represented by a
partition of the real line R, where each element of R belongs
to a qualitative class.

Relative Order of Magnitude (ROM) – represented by a family
of binary order-of-magnitude relations which establish
different comparison relations in R (e.g., comparability,
negligibility or closeness).

Both approaches, absolute and relative, can be combined.
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Logics for order-of-magnitude reasoning

Multimodal hybrid logics that enable us to deal with different
qualitative relations based on qualitative classes obtained by
dividing the real line in intervals.

OMR-logics that have been studied include qualitative relations:

comparability

negligibility

bidirectional negligibility

non-closeness

distance.
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OMRD-logic with distance

The logic OMRD is based on the model AOM(5) in which the real
line is divided into

seven equivalences classes with five landmarks.

0 +α +β−α−β
NL NM NS PS PM PL

where < is a strict linear order on real numbers and α < β.

Distance relation D on (U, <)

For all x , y , z , x ′, y ′ ∈ U,

If xDy , then x < y .

ciDci+1, for i ∈ {1, 2, 3, 4}.
If xDy and xDz , then y = z .

If xDy , x ′Dy ′, and x < x ′ then y < y ′.
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Logic OMRD – language

OMRD – the multimodal logic with constants over two basic
accessibility relations R and D together with their converses.

Vocabulary

Propositional variables: p1, p2, p3, . . . ,

Propositional constants: c1, . . . , c5,

Classical propositional operations: ¬,∨,∧,→,

Modal operations: [R], [R], [D], [D].

Formulas are defined as usual in modal logics.
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Logic OMRD – axiomatization

Axioms for landmarks

For i ∈ {1, . . . , 5} and j ∈ {1, . . . , 4}

〈R〉ci ∨ ci ∨ 〈R〉ci
ci → ([R]¬ci ∧ [R]¬ci )

cj → 〈D〉cj+1

Axioms for converses and ordering

For T ∈ {R,R,D,D} and S ∈ {R,R},

[T ](ϕ→ ψ)→ ([T ]ϕ→ [T ]ψ),

ϕ→ [T ]〈T ′〉ϕ, where T ′ is the converse of T ,

[R]ϕ→ [R][R]ϕ,

[S ]([S ]ϕ→ ψ) ∨ [S ]([S ]ψ → ϕ)
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Logic OMRD – axiomatization

Axioms for distance relation

[R]ϕ→ [D]ϕ

〈D〉ϕ→ [D]ϕ

(ϕ ∧ 〈D〉ψ ∧ 〈R〉(χ ∧ 〈D〉θ))↔ 〈R〉(θ ∧ 〈D〉χ ∧ 〈R〉(ψ ∧ 〈D〉))

Rules of inference

If ` ϕ→ ψ and ` ϕ, then ` ψ.

If ` ϕ, then ` [R]ϕ.

If ` ϕ, then ` [R]ϕ.

Provability of a formula is defined in a standard way.
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Logic OMRD – models

Structures of the form M = (U,R,R,D,D, c1, . . . , c5,m), where:

U – a nonempty set,

R is a strict linear order on U and R is the converse of R,

D ⊆ R and D is the converse of D,

D is partially functional and satisfies:

If sDt, s ′Dt ′, sRs ′, then tRt ′, for all s, s ′, t, t ′ ∈ U,

m(p) ⊆ U, for every propositional variable p

m(ci ) = ci ∈ U and ci 6= cj , for all i , j ∈ {1, . . . , 5}, i 6= j ,

(ci , ci+1) ∈ D, for all i ∈ {1, . . . , 4}.
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Logic OMRD – semantics

Semantics

Satisfaction: defined as usual in modal logics.

Truth in a model: satisfaction by all states.

OMRD-validity: truth in all models.

Soundness and Completeness

For every formula ϕ:

ϕ is OMRD-provable iff ϕ is OMRD-valid.

For details see [Burrieza et al. 2007] and [Zawidzki 2017].
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Relational representation of OMRD – RLD

Language

z0, z1, . . . – object variables,

P1,P2, . . . – relational variables,

C1, . . . ,C5 – relational constants representing propositional
constants from OMRD,

R,R,D,D – relational constants representing accessibility
relations of OMRD,,

−,∩, ; – relational operations.

Relational terms

Relational variables and C1, . . . ,C5 are terms.

If S ,T are terms and r ∈ {R,R,D,D}, then so are
−S , S ∩ T , (r ; T ).

Formulas: ziTz0, for i ≥ 1 and a relational term T .
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Models of RLD

Structures of the form M = (U,R,R,D,D,C1, . . . ,C5,m), where:

(i) U – a nonempty set,

(ii) m(P) = X × U, where X ⊆ U, for every relational variable P,

(iii) m(Ci ) = Ci ⊆ X × U, where X ⊆ U, for every i ∈ {1, . . . , 5},
(iv) Ci ∩ Cj = ∅, for all i , j ∈ {1, . . . , 5} such that i 6= j ,

(v) R,D ⊆ U2, R and D are converses of R and D, respectively,
and m(R) = R, m(D) = D, m(R) = R, m(D) = D,

(vi) For all x , y ∈ U and i ∈ {1, . . . , 4}, if (x , y) ∈ Ci , then there
is z ∈ U such that (x , z) ∈ D and (z , y) ∈ Ci+1,

(vii) For all x , y ∈ U and i ∈ {1, . . . , 5}, if (x , y) ∈ Ci , then for all
z ∈ U, if (x , z) ∈ R or (z , x) ∈ R, then (z , y) 6∈ Ci ,

(viii) For all x , y ∈ U and i ∈ {1, . . . , 5}, if (x , y) /∈ Ci , then either
there is z ∈ U such that both (x , z) ∈ R and (z , y) ∈ Ci or
there is z ∈ U such that both (z , x) ∈ R and (z , y) ∈ Ci ,
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Models of RLD

Further conditions:

(ix) D ⊆ R

(x) R is transitive and weakly connected,

(xi) R is weakly connected,

(xii) D and D are partially functional,

(xiii) For all x , x ′, y , y ′ ∈ U, if (x , x ′) ∈ D and (y , y ′) ∈ D and
(x , y) ∈ R, then (x ′, y ′) ∈ R,

(xiv) For all x , x ′, y , y ′ ∈ U, if (x , x ′) ∈ D and (y , y ′) ∈ D and
(x , y) ∈ R, then (x ′, y ′) ∈ R,

(xv) m extends to all the compound terms as usual.
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Relational representation of OMRD

Translation of OMRD-formulas into RLD-terms

τ(pi ) = Pi , for any pi ∈ V, i ≥ 1,

τ(ci ) = Ci , for every i ∈ {1, . . . , 5},
τ(¬ϕ) = −τ(ϕ),

τ(ϕ ∧ ψ) = τ(ϕ) ∩ τ(ψ),

For every r ∈ {R,R,D,D},

τ(〈r〉ϕ) = r ; τ(ϕ),

τ([r ]ϕ) = −(r ;−τ(ϕ)).

Given the weak semantics for OMRD defined by Zawidzki in
[Zaw17], it can be proved the following:

Translation theorem

For every OMRD-formula ϕ:

ϕ is OMRD-valid iff z1τ(ϕ)z0 is RLD-valid
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RLD-dual tableau

A dual tableau for RLD consists of the following rules:

the rules (−), (∩), (−∩) of RL∗-dual tableau,

the rule for composition (r ;), for r ∈ {R,R,D,D}, of
RL∗-dual tableau adjusted to RLD-language,

rules for converse relations (RR), (RR), (DD), (DD),

rules for constants Ci : (empty), (ord), (irref1), (irref2), (con),

the rules for relations R, D, and their converses:
(DR1), (DR2), (tran), (wcon), (pfunD), (pfunD), (distD),
(distD).
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Examples of new rules

Rules for relational constants Ci , i , j ∈ {1, . . . , 5}, i 6= j

(empty) X∪{zn−Ciz0}
X∪{zn−Ciz0,znCjz0}

(ord) X∪{zn(D;Ci+1)z0}
X∪{zn(D;Ci+1)z0,znCiz0}

(irref1) X∪{zn−(R;Ci )z0}
X∪{zn−(R;Ci )z0,znCiz0}

(irref2) X∪{zn−(R;Ci )z0}
X∪{zn−(R;Ci )z0,znCiz0}

(con) X∪{zn(R;Ci )z0,zn(R;Ci )z0}
X∪{zn(R;Ci )z0,zn(R;Ci )z0,zn−Ciz0}

Rules for the condition D ⊆ R

(DR1) X∪{zn(R;T )z0}
X∪{zn(R;T )z0,zn(D;T )z0}

(DR2) X∪{zn−(D;T )z0}
X∪{zn−(D;T )z0,zn−(R;T )z0}
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Examples of new rules

Rules for weak connectedness

For r ∈ {R,R}

(wcon) X∪G
X∪G∪{zn(r ;T )z0} |X∪G∪{zn(r ;T ′)z0}

where
G = {zn(r ;(T ∩ (r ;T ′)))z0, zn(r ;(T ∩ T ′))z0, zn(r ;((r ;T ) ∩ T ′))z0}

Rules for partial functionality

(pfunD) X∪{zn−(D;T )z0}
X∪{zn−(D;T )z0,zn(D;−T )z0}

(pfunD) X∪{zn−(D;T )z0}
X∪{zn−(D;T )z0,zn(D;−T )z0}
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Examples of new rules

Rules for the distance condition

(distD) X∪HD
X∪HD∪{zn(D;T )z0} |X∪HD∪{zn(R;(D;T ′))z0}

where HD = {zn(R;(T ∩ (R;T ′)))z0}

(distD)
X∪HD

X∪HD∪{zn(D;T )z0} |X∪HD∪{zn(R;(D;T ′))z0}

where HD = {zn(R;(T ∩ (R;T ′)))z0}

Order on applications of the rules

(−), (−∩), (∩), (empty), (ord), (irref1), (irref2), (con), (DR1),
(DR2), (tran), (wcon), (pfunD), (pfunD), (distD), (distD), (RR),
(RR), (DD), (DD), (tran)

Finally:

the rules (r ;) – all compositions are decomposed at the same time
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Some open problems

Can be this approach extended to modal logics with
sufficience and dual sufficiency operators?

Can be this approach extended to other non-classical logics?

Is there any other general and modular way to construct a
relational decision procedure?
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Thank you!
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