Relational decision procedures with their applications to nonclassical logics

Joanna Golińska-Pilarek presenting: Michał Zawidzki

University of Warsaw, Poland

University of Lodz, Poland

7th International Symposium on Games, Logics, and Formal Verification
GANDALF 2016
September 14-16, 2016
Catania, Italy
1 Dual tableaux – an overview
2 Relational logic and relational deduction
3 Relational decision procedures
4 Examples of applications
Deduction systems

Axiomatic deduction systems

Systems in Hilbert style [Frege, Russell, Heyting]:

- system: axioms (many) + rule (one)
- proof – finite sequence of formulas

Non-Hilbertian systems

- Gentzen’s calculus of sequents
- analytic tableaux – Beth 1955 and Hintikka 1955
 - Diagrams – Rasiowa and Sikorski 1960
 - Tableaux – Smullyan 1968 and Fitting 1990

Smullyan tableaux and Rasiowa-Sikorski diagrams are dual.
The rules usually have the form: \[\frac{\Phi}{\Phi_1 \mid \ldots \mid \Phi_n} \]

, – disjunction \quad | – conjunction

\(\Phi \) is valid iff the meta-disjunction of formulas from \(\Phi \) is valid

The rules are semantically invertible, that is for every set \(\Phi \) of formulas:

\(\Phi \) is valid iff all \(\Phi_i \) are valid

Axioms: some valid sets of formulas

Proof: a decomposition tree

Provability of a formula: existence of a closed proof tree
Decomposition rules for connectives:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(RS\lor)$</td>
<td>$\frac{\varphi \lor \psi}{\varphi, \psi}$</td>
</tr>
<tr>
<td>$(RS\neg\lor)$</td>
<td>$\frac{\neg(\varphi \lor \psi)}{\neg\varphi</td>
</tr>
<tr>
<td>$(RS\neg)$</td>
<td>$\frac{\neg\neg\varphi}{\varphi}$</td>
</tr>
</tbody>
</table>

Decomposition rules for quantifiers:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(RS\forall)$</td>
<td>$\frac{\forall x \varphi(x)}{\varphi(z)}$</td>
</tr>
<tr>
<td>$(RS\neg\forall)$</td>
<td>$\frac{\neg\forall x \varphi(x)}{\neg\varphi(z), \neg\forall x \varphi(x)}$</td>
</tr>
</tbody>
</table>

- z is a new variable
- z is any variable
Specific rule for identity:

\[(RS=) \quad \frac{\varphi(x)}{x = y, \varphi(x) \mid \varphi(y), \varphi(x)}\]

\(\varphi\) is an atomic formula, \(y\) is any variable.

Axiomatic sets:

- \(\varphi, \neg \varphi\)
- \(x = x\)
Example $\neg \forall x (\varphi \vee \psi(x)) \lor (\varphi \lor \forall x \psi(x))$

$\neg \forall x (\varphi \lor \psi(x)) \lor (\varphi \lor \forall x \psi(x))$

$\frac{\neg \forall x (\varphi \lor \psi(x)) \lor (\varphi \lor \forall x \psi(x))}{\text{(RS}\lor\text{)} \text{ twice}}$

$\neg \forall x (\varphi \lor \psi(x))$, φ, $\forall x \psi(x)$

$\frac{\neg \forall x (\varphi \lor \psi(x)) \lor (\varphi \lor \forall x \psi(x))}{\text{(RS}\forall\text{)} \text{ with a new variable } z}$

$\neg \forall x (\varphi \lor \psi(x))$, φ, $\psi(z)$

$\frac{\neg \forall x (\varphi \lor \psi(x)) \lor (\varphi \lor \forall x \psi(x))}{\text{(RS}$\neg\forall$\text{)} \text{ with variable } z}$

$\neg (\varphi \lor \psi(z))$, φ, $\psi(z)$, ...

$\frac{\neg (\varphi \lor \psi(z)) \lor (\varphi \lor \forall x \psi(x))}{\text{(RS}$\neg\lor$\text{)}}$

$\neg \varphi$, φ, ...

closed

$\frac{\neg (\varphi \lor \psi(z)) \lor (\varphi \lor \forall x \psi(x))}{\text{(RS}$\neg\forall$\text{)}}$

$\neg \psi(z)$, $\psi(z)$, ...

closed
The common language of most dual tableaux is

THE LOGIC RL OF BINARY RELATIONS.

Formal features of RL

- Formulas are intended to represent statements saying that two objects are related.
- Relations are specified in the form of relational terms.
- Terms are built from relational variables and relational constants with relational operations.
Relational logics – why?

Formal motivation

The relational logic RL is the logical representation of REPRESENTABLE RELATION ALGEBRAS introduced by Tarski.

Representable Relation Algebras RRA:

- Relation algebras that are isomorphic to proper algebras of binary relations
- Not all relation algebras are representable
- RRA is not finitely axiomatizable
- RRA is a discriminator variety with a recursively enumerable but undecidable equational theory
Possible answer

- Broad applicability.

- Elements of relational structures can be interpreted as possible worlds, points (intervals) of time, states of a computer program, etc.

- We gain compositionality: the relational counterparts of the intensional connectives become compositional, that is the meaning of a compound formula is a function of meaning of its subformulas.

- It enables us to express an interaction between information about static facts and dynamic transitions between states in a single uniform formalism.
Advantages of the relational logic

- A generic logic suitable for representing within a uniform formalism the three basic components of formal systems: syntax, semantics, and deduction apparatus.
- A general framework for representing, investigating, implementing, and comparing theories with incompatible languages and/or semantics.
- A great variety of logics can be represented within the relational logic, in particular modal, temporal, spatial, information, program, as well as intuitionistic, and many-valued, among others.
Possible answer

Methodology of relational dual tableaux enables us to build proof systems for various theories in a systematic modular way:

- A dual tableau for the classical relational logic of binary relations is a core of most of the relational proof systems.

- For any particular logic some specific rules are designed and adjoined to the core set of rules.

- Relational dual tableau systems usually do more: they can be used for proving entailment, model checking, and satisfaction in finite models.
Advantages of relational dual tableaux

- We need not implement each deduction system from scratch.
- We only extend the core system with a module corresponding to a specific part of a logic under consideration.
Relational logic RL of binary relations

Language
- object variables: \(x, y, z, \ldots \)
- relational variables: \(P_1, P_2, \ldots \)
- relational constants: \(1, 1' \)
- relational operations: \(-, \cup, \cap, {-1}, ; \)

Terms and formulas
- Atomic term: a relational variable or constant
- Compound terms: \(\neg P, P \cup Q, P \cap Q, P^{-1}, P; Q \)
- Formulas: \(xTy \)
Relational model: \(\mathcal{M} = (U, m) \)

- \(U \) – a non-empty set
- \(m(P) \) – any binary relation on \(U \)
- \(m(1) = U \times U, m(1') = Id_U \)
- \(m(-Q) = (U \times U) \setminus m(Q) \)
- \(m(Q \cup T) = m(Q) \cup m(T) \)
- \(m(Q \cap T) = m(Q) \cap m(T) \)
- \(m(Q^{-1}) = m(Q)^{-1} \)
- \(m(Q; T) = m(Q); m(T) = \)
 \[\{(x, y) \in U \times U : \exists z \in U((x, z) \in m(Q) \land (z, y) \in m(T))\} \].
Valuation

Any function v that assigns object variables to elements from U.

Semantics

- Satisfaction, $\mathcal{M}, v \models xTy$: $(v(x), v(y)) \in m(T)$
- Truth, $\mathcal{M} \models xTy$: satisfaction by all valuations in \mathcal{M}
- Validity: truth in all models.
Decomposition rules:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cup)</td>
<td>$x(R \cup S)y$</td>
<td>xRy, xSy</td>
</tr>
<tr>
<td>$(;)$</td>
<td>$x(R; S)y$</td>
<td>$xRz, x(R; S)y \mid zSy, x(R; S)y$</td>
</tr>
<tr>
<td>$(-\cup)$</td>
<td>$x-(R \cup S)y$</td>
<td>$x-Ry \mid x-Sy$</td>
</tr>
<tr>
<td>$(-;)$</td>
<td>$x-(R; S)y$</td>
<td>$x-Rz, z-Sy$</td>
</tr>
</tbody>
</table>

- z is any variable
- z is a new variable
Dual tableau for the relational logic RL

Specific rules:

\[(1'1) \quad \frac{xRy}{xRz, xRy | y'1'z, xRy} \quad (1'2) \quad \frac{xRy}{x'1'z, xRy | zRy, xRy}\]

- \(z\) is any object variable, \(R\) is an atomic term

Axioms:

- \(xTy, x\sim Ty\)
- \(x1y\)
- \(x1'x\)
Main Results

Soundness and Completeness

For every RL-formula φ the following conditions are equivalent:

1. φ is RL-valid.
2. φ is RL-provable.

The connection between RL and RRA

For every relational term R the following conditions are equivalent, for all object variables x and y:

- $R = 1$ is RRA-valid.
- xRy is RL-valid.
Example - the proof of $1'; R \subseteq R$

\[
\begin{align*}
\frac{x(-(1'; R) \cup R)y}{(\cup)} \\
\frac{x-(1'; R)y, xRy}{(-;)} \\
\frac{x-1'z, z-Ry, xRy}{(1'2)}
\end{align*}
\]

- $x1'z, x-1'z, \ldots$ closed
- $z-Ry, zRy, \ldots$ closed

J. Golińska-Pilarek, presenting: M. Zawidzki

Relational decision procedures
Entailment in RL

Fact [Tarski 1941]

\[R_1 = 1, \ldots, R_n = 1 \text{ imply } R = 1 \]

\[\iff \]

\[(1; -(R_1 \cap \ldots \cap R_n); 1) \cup R = 1. \]

Entailment can be expressed in RL:

\[xR_1 y, \ldots, xR_n y \text{ imply } xRy \]

\[\iff \]

\[x(1; -(R_1 \cap \ldots \cap R_n); 1) \cup R)y \text{ is RL-valid.} \]
Problem

Let $\mathcal{M} = (U, m)$ be a finite RL-model, $\varphi = xRy$ be an RL-formula, and ν be a valuation in \mathcal{M}.

1. Model checking: $\mathcal{M} \models \varphi$?

2. Satisfaction problem: $\mathcal{M}, \nu \models \varphi$?

How to verify?

- Define the logic $\text{RL}_{\mathcal{M}, \varphi}$ coding \mathcal{M} and φ
- Construct dual tableau for $\text{RL}_{\mathcal{M}, \varphi}$

For details see the book [Orłowska-Golińska-Pilarek 2011].
Alternative versions of the relational logic RL

Most of the non-classical logics can be translated either into a fragment or an extension of the relational logic RL.

Possible fragments of RL
- without the relational constants 1 and 1′
- some restriction on terms built with the composition operation

Possible extensions of RL
- with object constants and/or object operations
- more relational constants and/or relational operations
- additional n-ary relational symbols, for $n > 2$

Other: any combination of the above without object/relational variables (only object/relational constants).
Development of a relational semantics for L (e.g., Kripke semantics).

Development of a relational logic RL_L appropriate for a logic L.

Development of a validity preserving translation, τ, from the language of logic L into the language of logic RL_L.

Construction of a dual tableau for RL_L such that for every formula φ of L, φ is valid in L iff its translation $\tau(\varphi)$ is provable in RL_L.

Construction of a dual tableau for extensions of RL_L used for verification of entailment, for model checking, and for verification of satisfiability in the logic L.
The general relational methodology

Relational dual tableaux have been constructed for a great variety of non-classical logics:

- modal, temporal, epistemic, dynamic,
- intuitionistic and relevant,
- many-valued, fuzzy, rough-set-based, among others.

Disadvantages

The general relational methodology does not guarantee that the constructed system will be a decision procedure.

In most cases it is NOT, while logics for which systems are constructed are decidable.
Possible approaches

- Restricted relational language and/or applications of standard RL-rules that can generate infinite trees, for instance:
 - The rule $(;)$ cannot precede an application of the rule $(-;)$ and a chosen variable z must occur on a branch. (Used in systems for simple fragments of RL, see [OGP11].)
 - A relational language is restricted: only special forms of composition terms are allowed; some additional requirements on applications of standard RL-rules are assumed. (Used in systems for those fragments of RL that can be used to express modal and description logics. For details see papers of Cantone, Nicolosi-Asmundo, and Orłowska.)
Towards decision procedures

Possible approaches

- New rules instead of 'bad' rules.
- External techniques typical for tableaux: backtracking, backjumping, simplifications.
- Any combination of the above.

Objective

To establish a general methodology for constructing relational decision procedures.
Relational decision procedures presented in the paper

can serve as:

- decision procedures for modal and intuitionistic logics,
- a starting point for a general relational decision procedure.
The main features of the approach

- Only restricted forms of relational terms with composition are allowed.
- New rules for the composition operation.
- New rules corresponding to specific properties of the accessibility relation.
- Additional external constraints on applications of rules.
- Exactly one finite tree for each formula.
- Each of the systems is not only a base for an algorithm verifying validity of a formula, but is itself a decision procedure, with all the necessary bookkeeping built into the rules.
A fragment of the relational logic: RL^*

Language of RL^*

- object variables: $\mathbb{OV} = \{z_0, z_1, \ldots\}$
- relational variables: $\mathbb{RV} = \{P_1, P_2, \ldots\}$
- the single relational constant: R
- relational operations: $\{−, \cap, ;\}$.

Relational terms of RL^*

- Relational variables are terms.
- If S, T are terms, then so are $−S, S \cap T, (R; T)$.

Relational formulas are of the form $z_n T z_0$, for $n \geq 1$.

Terms and formulas are uniquely ordered.
Important feature

The relational constant R and the composition operator $;$ are syntactically inseparable; the composition operator allows only terms with R on the left.

R alone is not a term.

Only the object on the left is significant in a formula; the right-hand side has the fixed dummy variable.

Why RL*?

Such a restricted relational language is rich enough to express many non-classical logics, e.g., some modal and intuitionistic.
A fragment of the relational logic: RL*

Semantics

Relational models, satisfaction, truth, and validity are defined in a standard way.

Thus, models are of the form \((U, m)\) and such that:

- Relational variables are interpreted as right ideal relations.
- \(m(R)\) may satisfy some additional conditions (reflexivity, transitivity, heredity).
- \(m\) satisfies the standard conditions of RL-models.
New rules

All the systems contain the following rules:

- (\neg), (\cap), $(\neg\cap)$ – old rules in the new fashion
- $(R;)$ – the new rule for terms built with the composition operator

Given a logic, its system may contain the rules:

- (ref) – a new rule for reflexivity
- (tran) – a new rule for transitivity
- (her) – a new rule for heredity condition.
In the definition of a decomposition tree we additionally assume:

1. Whenever several rules are applicable to a node, the first possible schema from the following list is chosen: (\neg), $(\neg \cap)$, (\cap), (ref), (her), (tran), and $(R;)$. Within the schema, the instance with the minimal formula is applied.

2. The rule $(R;)$ can be applied to a node provided that its proper part is not a subcopy of any of its predecessor nodes.

3. On a branch the rule (ref) can be applied to a given formula at most once.
The rule \((R;) \)

\[
\begin{align*}
(R;) & \quad X \cup \{z_k A_m z_0 \mid m \in M\} \cup \{z_k - (R; S_i) z_0 \mid i \in I\} \cup \{z_k (R; T_j) z_0 \mid j \in J\} \\
& \quad X \cup \{z_k A_m z_0 \mid m \in M\} \cup \{z_k - S_i z_0 \mid i \in I\} \cup \{z_k T_j z_0 \mid i \in I, j \in J\}
\end{align*}
\]

1. \(k \geq 1 \),
2. \(z_k T z_0 \notin X \),
3. \(M, I, J \) are sets of indices, \(I \neq \emptyset \),
4. \(A_m \) is a literal and \(S_i, T_j \) are terms,
5. \(N = \{k_i \mid i \in I\} \) is the set of consecutive natural numbers that do not occur in the premise.
Specific rules

(ref) \[X \cup \{ z_k(R^s; T)z_0 \} \]
\[X \cup \{ z_k(R^s; T)z_0 \} \cup \{ z_k(R^i; T)z_0 \mid i \in \{0, \ldots, s-1\} \} \]

\(T \) is a non-compositional term,
For all \(t > s \), it holds that \(z_k(R^t; T)z_0 \notin X \).

(tran) \[X \cup \{ z_k(R; T)z_0 \} \]
\[X \cup \{ z_k(R; T)z_0 \} \cup \{ z_k(R^2; T)z_0 \} \]

\(T \) is a non-compositional term.

(her) \[X \cup \{ z_k-(R; T)z_0 \} \cup \{ z_k-P_i z_0 \mid i \in I \} \]
\[X \cup \{ z_k-(R; T)z_0 \} \cup \{ z_k-P_i z_0 \mid i \in I \} \cup \{ z_k(R; -P_i)z_0 \mid i \in I \} \]

\(z_k-Pz_0 \notin X \) for any relational variable \(P \).
Main theorems

Termination and uniqueness
Every formula has exactly one finite tree.

Soundness and completeness
For every formula φ:

φ is valid if and only if φ is provable.
Example of applications – modal logics

RL* can be applied as for the relational representation of modal logics of transitive or reflexive frames.

Let L be a modal logic. Then, a relational logic for L is RL_L* determined by the following translation.

Translation of a standard modal logic L into terms of RL_L*

- $\tau(p_i) = P_i$, for any $p_i \in V$, $i \geq 1$
- $\tau(\neg \varphi) = -\tau(\varphi)$
- $\tau(\varphi \land \psi) = \tau(\varphi) \cap \tau(\psi)$
- $\tau(\langle R \rangle \varphi) = R \cdot \tau(\varphi)$
- $\tau(\lbrack R \rbrack \varphi) = -(R \cdot -\tau(\varphi))$

RL_L*-models must satisfy all the constraints imposed on R in L-models.
Main theorems

The translation τ preserves validity:

Translation Theorem

For every L-formula φ:

φ is L-valid if and only if $z_1 \tau(\varphi) z_0$ is RL_L^*-valid.

Let L be a modal logic of reflexive or transitive frames.

A dual tableau for L

A dual tableau for RL^* with the rules (ref) or (tran).

Thus, we obtain:

Deterministic decision procedures

An RL_L^*-dual tableau is a deterministic decision procedure for a logic L.
Logic INT

- **INT-language** = the language of the classical propositional logic.
- **INT-models** are Kripke structures \((U, R, m)\) such that:
 - \(R\) is a reflexive and transitive relation on \(U\)
 - For all \(s, s' \in U\):
 - (her) If \((s, s') \in R\) and \(s \in m(p)\), then \(s' \in m(p)\).

Satisfaction

- \(\mathcal{M}, s \models p\) iff \(s \in m(p)\)
- \(\mathcal{M}, s \models \neg \varphi\) iff for every \(s' \in U\), if \((s, s') \in R\), then \(\mathcal{M}, s' \not\models \varphi\)
- \(\mathcal{M}, s \models (\varphi \rightarrow \psi)\) iff for every \(s' \in U\), if \((s, s') \in R\) and \(\mathcal{M}, s' \models \varphi\), then \(\mathcal{M}, s' \models \psi\).
The relational logic RL_INT^*

- RL_INT^*-language is the RL^*-language,
- RL_INT^*-models are RL^*-models with R interpreted as a reflexive and transitive relation satisfying heredity condition:

 (her') If $(x, y) \in m(R)$ and $(x, z) \in m(P)$, then $(y, z) \in m(P)$.

Translation ι

- $\iota(p_i) = P_i$, for every propositional variable p_i
- $\iota(\neg \varphi) = -(R; \iota(\varphi))$
- $\iota(\varphi \to \psi) = -(R; (\iota(\varphi) \cap \neg \iota(\psi)))$.
Translation Theorem

For every INT-formula φ:

φ is INT-valid if and only if $z_1 \nu(\varphi)z_0$ is RL_{INT}^*-valid.

RL_{INT}^*-dual tableau

A dual tableau for RL^* with the rules (ref), (tran), (her).

Relational decision procedure for INT

RL_{INT}^*-dual tableau is a deterministic decision procedure for INT.
Further results

This methodology has been extended to multimodal logics with more than one accessibility relation and some description logics in the paper:

The most recent research

Relational decision procedure for the qualitative modal logic of order of magnitude reasoning with distance relation – OMR$_D$.
QR is an approach within Artificial Intelligence for dealing with commonsense knowledge about the physical world.

The crucial issue of QR is to represent and reason about continuous properties of objects in a symbolic but human-like manner; with no reliance on numerical information.

Given a context, qualitative representation makes only as many distinctions as necessary to identify objects, events, situations, etc.

It is an adequate tool for dealing with situations in which information is not sufficiently precise (e.g., numerical values are not available).
Human knowledge is almost always incomplete.

- People often draw useful conclusions about the real world without mathematical equations or theories.

- They figure out what is happening and how they can affect it, even if they have less precise data than would be required to use traditional, purely quantitative and numerical methods.

- Scientists use qualitative reasoning when they initially try to understand a problem, when they set up formal representation for a particular task, and when they interpret quantitative calculation or simulation.
Order-of-magnitude Reasoning (OMR) is an approach within QR. The order-of-magnitude approach enables us to reason in terms of relative magnitudes of variables obtained by comparisons of the sizes of quantities. OMR methods of reasoning are situated midway between numerical methods and purely qualitative formalisms.
OMR-approaches:

- **Absolute Order of Magnitude (AOM)** – represented by a partition of the real line \mathbb{R}, where each element of \mathbb{R} belongs to a qualitative class.

- **Relative Order of Magnitude (ROM)** – represented by a family of binary order-of-magnitude relations which establish different comparison relations in \mathbb{R} (e.g., comparability, negligibility or closeness).

- Both approaches, absolute and relative, can be combined.
Multimodal hybrid logics that enable us to deal with different qualitative relations based on qualitative classes obtained by dividing the real line in intervals.

OMR-logics that have been studied include qualitative relations:

- comparability
- negligibility
- bidirectional negligibility
- non-closeness
- distance.
The logic OMR_D is based on the model $\text{AOM}(5)$ in which the real line is divided into

seven equivalences classes with *five* landmarks.

<table>
<thead>
<tr>
<th>NL</th>
<th>NM</th>
<th>NS</th>
<th>PS</th>
<th>PM</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\beta$</td>
<td>$-\alpha$</td>
<td>0</td>
<td>$+\alpha$</td>
<td>$+\beta$</td>
<td></td>
</tr>
</tbody>
</table>

where $<$ is a strict linear order on real numbers and $\alpha < \beta$.

Distance relation D on $(U, <)$

For all $x, y, z, x', y' \in U$,

- If xDy, then $x < y$.
- c_iDc_{i+1}, for $i \in \{1, 2, 3, 4\}$.
- If xDy and xDz, then $y = z$.
- If xDy, $x'Dy'$, and $x < x'$ then $y < y'$.

OMR_D – the multimodal logic with constants over two basic accessibility relations R and D together with their converses.

Vocabulary

- Propositional variables: \(p_1, p_2, p_3, \ldots \),
- Propositional constants: \(c_1, \ldots, c_5 \),
- Classical propositional operations: \(\neg, \lor, \land, \rightarrow \),
- Modal operations: \([R], [\neg R], [D], [\neg D] \).

Formulas are defined as usual in modal logics.
Axioms for landmarks

For $i \in \{1, \ldots, 5\}$ and $j \in \{1, \ldots, 4\}$

\[
\langle \overline{R} \rangle c_i \lor c_i \lor \langle R \rangle c_i
\]

$c_i \rightarrow ([\overline{R}] \neg c_i \land [R] \neg c_i)$

$c_j \rightarrow \langle D \rangle c_{j+1}$

Axioms for converses and ordering

For $T \in \{R, \overline{R}, D, \overline{D}\}$ and $S \in \{R, \overline{R}\}$,

\[
[T](\varphi \to \psi) \to ([T]\varphi \to [T]\psi),
\]

$\varphi \to [T]\langle T' \rangle \varphi$, where T' is the converse of T,

$[R] \varphi \to [R][R] \varphi$,

$[S][S] \varphi \to \psi \lor [S][S] \psi \to \varphi$
Logic OMR_D – axiomatization

Axioms for distance relation

- $[R] \varphi \rightarrow [D] \varphi$
- $\langle D \rangle \varphi \rightarrow [D] \varphi$
- $(\varphi \land \langle D \rangle \psi \land \langle R \rangle (\chi \land \langle D \rangle \theta)) \leftrightarrow \langle R \rangle (\theta \land \langle D \rangle \chi \land \langle R \rangle (\psi \land \langle D \rangle))$

Rules of inference

- If $\vdash \varphi \rightarrow \psi$ and $\vdash \varphi$, then $\vdash \psi$.
- If $\vdash \varphi$, then $\vdash [R] \varphi$.
- If $\vdash \varphi$, then $\vdash [\bar{R}] \varphi$.

Provability of a formula is defined in a standard way.
Structures of the form $\mathcal{M} = (U, R, \overline{R}, D, \overline{D}, c_1, \ldots, c_5, m)$, where:

- U – a nonempty set,
- R is a strict linear order on U and \overline{R} is the converse of R,
- $D \subseteq R$ and \overline{D} is the converse of D,
- D is partially functional and satisfies:
 - If $sD t$, $s'D t'$, $sR s'$, then $tR t'$, for all $s, s', t, t' \in U$,
- $m(p) \subseteq U$, for every propositional variable p
- $m(c_i) = c_i \in U$ and $c_i \neq c_j$, for all $i, j \in \{1, \ldots, 5\}$, $i \neq j$,
- $(c_i, c_{i+1}) \in D$, for all $i \in \{1, \ldots, 4\}$.
Semantics

Satisfaction: defined as usual in modal logics.
Truth in a model: satisfaction by all states.
OMR\textsubscript{D}-validity: truth in all models.

Soundness and Completeness

For every formula \(\varphi \):

\[\varphi \text{ is OMR}_{\text{D}}\text{-provable iff } \varphi \text{ is OMR}_{\text{D}}\text{-valid.} \]

For details see [Burrieza et al. 2007] and [Zawidzki 2017].
Language
- \(z_0, z_1, \ldots \) – object variables,
- \(P_1, P_2, \ldots \) – relational variables,
- \(C_1, \ldots, C_5 \) – relational constants representing propositional constants from \(\text{OMR}_D \),
- \(R, \overline{R}, D, \overline{D} \) – relational constants representing accessibility relations of \(\text{OMR}_D \),
- \(-, \cap, ;\) – relational operations.

Relational terms
- Relational variables and \(C_1, \ldots, C_5 \) are terms.
- If \(S, T \) are terms and \(r \in \{ R, \overline{R}, D, \overline{D} \} \), then so are \(-S, S \cap T, (r ; T)\).

Formulas: \(z_i T z_0 \), for \(i \geq 1 \) and a relational term \(T \).
Models of RL_D

Structures of the form $\mathcal{M} = (U, R, \overline{R}, D, \overline{D}, C_1, \ldots, C_5, m)$, where:

(i) U – a nonempty set,

(ii) $m(P) = X \times U$, where $X \subseteq U$, for every relational variable P,

(iii) $m(C_i) = C_i \subseteq X \times U$, where $X \subseteq U$, for every $i \in \{1, \ldots, 5\}$,

(iv) $C_i \cap C_j = \emptyset$, for all $i, j \in \{1, \ldots, 5\}$ such that $i \neq j$,

(v) $R, D \subseteq U^2$, \overline{R} and \overline{D} are converses of R and D, respectively, and $m(R) = R$, $m(D) = D$, $m(\overline{R}) = \overline{R}$, $m(\overline{D}) = \overline{D}$,

(vi) For all $x, y \in U$ and $i \in \{1, \ldots, 4\}$, if $(x, y) \in C_i$, then there is $z \in U$ such that $(x, z) \in D$ and $(z, y) \in C_{i+1}$,

(vii) For all $x, y \in U$ and $i \in \{1, \ldots, 5\}$, if $(x, y) \in C_i$, then for all $z \in U$, if $(x, z) \in R$ or $(z, x) \in R$, then $(z, y) \notin C_i$,

(viii) For all $x, y \in U$ and $i \in \{1, \ldots, 5\}$, if $(x, y) \notin C_i$, then either there is $z \in U$ such that both $(x, z) \in R$ and $(z, y) \in C_i$ or there is $z \in U$ such that both $(z, x) \in R$ and $(z, y) \in C_i$.

J. Golińska-Pilarek, presenting: M. Zawidzki
Further conditions:

(ix) $D \subseteq R$

(x) R is transitive and weakly connected,

(xi) \overline{R} is weakly connected,

(xii) D and \overline{D} are partially functional,

(xiii) For all $x, x', y, y' \in U$, if $(x, x') \in D$ and $(y, y') \in D$ and $(x, y) \in R$, then $(x', y') \in R$,

(xiv) For all $x, x', y, y' \in U$, if $(x, x') \in \overline{D}$ and $(y, y') \in \overline{D}$ and $(x, y) \in \overline{R}$, then $(x', y') \in \overline{R}$,

(xv) m extends to all the compound terms as usual.
Relational representation of OMR_D

Translation of OMR_D-formulas into RL_D-terms

- \(\tau(p_i) = P_i \), for any \(p_i \in \mathbb{V}, i \geq 1 \),
- \(\tau(c_i) = C_i \), for every \(i \in \{1, \ldots, 5\} \),
- \(\tau(\neg \varphi) = \neg \tau(\varphi) \),
- \(\tau(\varphi \land \psi) = \tau(\varphi) \cap \tau(\psi) \),

For every \(r \in \{R, \overline{R}, D, \overline{D}\} \),

- \(\tau(\langle r \rangle \varphi) = r ; \tau(\varphi) \),
- \(\tau([r] \varphi) = \neg (r ; \neg \tau(\varphi)) \).

Given the weak semantics for OMR_D defined by Zawidzki in [Zaw17], it can be proved the following:

Translation theorem

For every OMR_D-formula \(\varphi \):

\(\varphi \) is OMR_D-valid iff \(z_1 \tau(\varphi)z_0 \) is RL_D-valid
A dual tableau for RL_D consists of the following rules:

- the rules (\neg), (\cap), $(\neg\cap)$ of RL^*-dual tableau,
- the rule for composition $(r;)$, for $r \in \{R, \overline{R}, D, \overline{D}\}$, of RL^*-dual tableau adjusted to RL_D-language,
- rules for converse relations $(R\overline{R})$, $(\overline{R}R)$, (DD), $(\overline{D}D)$,
- rules for constants C_i: (empty), (ord), (irref$_1$), (irref$_2$), (con),
- the rules for relations R, D, and their converses: (DR_1), (DR_2), (tran), (wcon), (pfun$_D$), (pfun$_{\overline{D}}$), (dist$_D$), (dist$_{\overline{D}}$).
Examples of new rules

Rules for relational constants C_i, $i, j \in \{1, \ldots, 5\}$, $i \neq j$

(empty) \[
\frac{X \cup \{z_n - C_i z_0\}}{X \cup \{z_n - C_i z_0, z_n C_j z_0\}}
\]

(ord) \[
\frac{X \cup \{z_n (D; C_{i+1}) z_0\}}{X \cup \{z_n (D; C_{i+1}) z_0, z_n C_i z_0\}}
\]

(irref$_1$) \[
\frac{X \cup \{z_n -(R; C_i) z_0\}}{X \cup \{z_n -(R; C_i) z_0, z_n C_i z_0\}}
\]

(irref$_2$) \[
\frac{X \cup \{z_n -(\bar{R}; C_i) z_0\}}{X \cup \{z_n -(\bar{R}; C_i) z_0, z_n C_i z_0\}}
\]

(con) \[
\frac{X \cup \{z_n (\bar{R}; C_i) z_0, z_n (R; C_i) z_0\}}{X \cup \{z_n (\bar{R}; C_i) z_0, z_n (R; C_i) z_0, z_n - C_i z_0\}}
\]

Rules for the condition $D \subseteq R$

(DR$_1$) \[
\frac{X \cup \{z_n (R; T) z_0\}}{X \cup \{z_n (R; T) z_0, z_n (D; T) z_0\}}
\]

(DR$_2$) \[
\frac{X \cup \{z_n -(D; T) z_0\}}{X \cup \{z_n -(D; T) z_0, z_n -(R; T) z_0\}}
\]
Examples of new rules

Rules for weak connectedness

For $r \in \{R, \overline{R}\}$

\[(wcon) \quad \frac{X \cup G}{X \cup G \cup \{z_n(r; T)z_0\} | X \cup G \cup \{z_n(r; T')z_0\}} \]

where

$G = \{z_n(r; (T \cap (r; T')))z_0, z_n(r; (T \cap T'))z_0, z_n(r; ((r; T) \cap T'))z_0\}$

Rules for partial functionality

\[(pfun_D) \quad \frac{X \cup \{z_n - (D; T)z_0\}}{X \cup \{z_n - (D; T)z_0, z_n(D; - T)z_0\}} \]

\[(pfun_{\overline{D}}) \quad \frac{X \cup \{z_n - (\overline{D}; T)z_0\}}{X \cup \{z_n - (\overline{D}; T)z_0, z_n(\overline{D}; - T)z_0\}} \]
Examples of new rules

Rules for the distance condition

\[(\text{dist}_D) \quad \frac{X \cup H_D}{X \cup H_D \cup \{z_n(D; T)z_0\} \mid X \cup H_D \cup \{z_n(R; (D; T'))z_0\}}\]

where \(H_D = \{z_n(R; (T \cap (R; T')))z_0\} \)

\[(\text{dist}_{\bar{D}}) \quad \frac{X \cup H_{\bar{D}}}{X \cup H_{\bar{D}} \cup \{z_n(\bar{D}; T)z_0\} \mid X \cup H_{\bar{D}} \cup \{z_n(\bar{R}; (\bar{D}; T'))z_0\}}\]

where \(H_{\bar{D}} = \{z_n(\bar{R}; (T \cap (\bar{R}; T')))z_0\} \)

Order on applications of the rules

\((-), (-\cap), (\cap), \text{empty), (ord), (\text{irref}_1), (\text{irref}_2), (\text{con}), (\text{DR}_1), (\text{DR}_2), (\text{tran}), (\text{wcon}), (\text{pfun}_D), (\text{pfun}_{\bar{D}}), (\text{dist}_D), (\text{dist}_{\bar{D}}), (\text{RR}), (\bar{R}\bar{R}), (\bar{D}\bar{D}), (\bar{D}\bar{D}), (\text{tran})\)

Finally:

the rules \((r;)\) – all compositions are decomposed at the same time.
Some open problems

- Can be this approach extended to modal logics with sufficiency and dual sufficiency operators?
- Can be this approach extended to other non-classical logics?
- Is there any other general and modular way to construct a relational decision procedure?
Thank you!

Research supported by the Polish National Science Centre research project DEC-2011/02/A/HS1/00395.

