
On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

1/ 16

On quantified propositional logics
and the exponential time hierarchy

Jonni Virtema

University of Helsinki, Finland
jonni.virtema@gmail.com

Joint work with Miika Hannula, Juha Kontinen, and Martin Lück

GandALF 2016
15th of September, 2016

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

2/ 16

Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

2/ 16

Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

2/ 16

Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

3/ 16

Team Semantics: Motivation and History

Logical modelling of uncertainty, imperfect information, and different notions of
dependence such as functional dependence and independence. Related to similar
concepts in statistics, database theory etc.

Historical development:

I Branching quantifiers by Henkin 1959.

I Independence-friendly logic by Hintikka and Sandu 1989.

I Compositional semantics for independence-friendly logic by Hodges 1997.
(Origin of team semantics.)

I Dependence logic by Väänänen 2007.

I Modal dependence logic by Väänänen 2008.

I Introduction of other dependency notions to team semantics such as
inclusion, exclusion, and independence. Galliani, Grädel, Väänänen.

I Generalized atoms by Kuusisto (derived from generalised quantifiers).

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

3/ 16

Team Semantics: Motivation and History

Logical modelling of uncertainty, imperfect information, and different notions of
dependence such as functional dependence and independence. Related to similar
concepts in statistics, database theory etc.

Historical development:

I Branching quantifiers by Henkin 1959.

I Independence-friendly logic by Hintikka and Sandu 1989.

I Compositional semantics for independence-friendly logic by Hodges 1997.
(Origin of team semantics.)

I Dependence logic by Väänänen 2007.

I Modal dependence logic by Väänänen 2008.

I Introduction of other dependency notions to team semantics such as
inclusion, exclusion, and independence. Galliani, Grädel, Väänänen.

I Generalized atoms by Kuusisto (derived from generalised quantifiers).

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

4/ 16

Quantified propositional logic

Grammar of quantified propositional logic QPL (or QBF) in negation normal
form:

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ∃pϕ | ∀pϕ.

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

We want to define team semantics for QPL s.t. we have the following property
(flattness):

If ϕ is an QPL-formula and X a set of propositional assignments:

X |= ϕ ⇐⇒ ∀s ∈ X : s |= ϕ.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

4/ 16

Quantified propositional logic

Grammar of quantified propositional logic QPL (or QBF) in negation normal
form:

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ∃pϕ | ∀pϕ.

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

We want to define team semantics for QPL s.t. we have the following property
(flattness):

If ϕ is an QPL-formula and X a set of propositional assignments:

X |= ϕ ⇐⇒ ∀s ∈ X : s |= ϕ.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

5/ 16

Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

s |= p ⇔ s(p) = 1

s |= ¬p ⇔ s(p) = 0

s |= ϕ ∧ ψ ⇔ s |= ϕ and s |= ψ

s |= ϕ ∨ ψ ⇔ s |= ϕ or s |= ψ

s |= ∃p ϕ ⇔ s(b/p) |= ϕ for some b ∈ {0, 1}
s |= ∀p ϕ ⇔ s(b/p) |= ϕ for all b ∈ {0, 1}

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

5/ 16

Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

X |= p ⇔ ∀s ∈ X : s(p) = 1

s |= ¬p ⇔ s(p) = 0

s |= ϕ ∧ ψ ⇔ s |= ϕ and s |= ψ

s |= ϕ ∨ ψ ⇔ s |= ϕ or s |= ψ

s |= ∃p ϕ ⇔ s(b/p) |= ϕ for some b ∈ {0, 1}
s |= ∀p ϕ ⇔ s(b/p) |= ϕ for all b ∈ {0, 1}

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

5/ 16

Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

X |= p ⇔ ∀s ∈ X : s(p) = 1

X |= ¬p ⇔ ∀s ∈ X : s(p) = 0

s |= ϕ ∧ ψ ⇔ s |= ϕ and s |= ψ

s |= ϕ ∨ ψ ⇔ s |= ϕ or s |= ψ

s |= ∃p ϕ ⇔ s(b/p) |= ϕ for some b ∈ {0, 1}
s |= ∀p ϕ ⇔ s(b/p) |= ϕ for all b ∈ {0, 1}

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

5/ 16

Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

X |= p ⇔ ∀s ∈ X : s(p) = 1

X |= ¬p ⇔ ∀s ∈ X : s(p) = 0

X |= ϕ ∧ ψ ⇔ X |= ϕ and X |= ψ

s |= ϕ ∨ ψ ⇔ s |= ϕ or s |= ψ

s |= ∃p ϕ ⇔ s(b/p) |= ϕ for some b ∈ {0, 1}
s |= ∀p ϕ ⇔ s(b/p) |= ϕ for all b ∈ {0, 1}

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

5/ 16

Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

X |= p ⇔ ∀s ∈ X : s(p) = 1

X |= ¬p ⇔ ∀s ∈ X : s(p) = 0

X |= ϕ ∧ ψ ⇔ X |= ϕ and X |= ψ

X |= ϕ ∨ ψ ⇔ Y |= ϕ and Z |= ψ for some Y ∪ Z = X

s |= ∃p ϕ ⇔ s(b/p) |= ϕ for some b ∈ {0, 1}
s |= ∀p ϕ ⇔ s(b/p) |= ϕ for all b ∈ {0, 1}

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

5/ 16

Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

X |= p ⇔ ∀s ∈ X : s(p) = 1

X |= ¬p ⇔ ∀s ∈ X : s(p) = 0

X |= ϕ ∧ ψ ⇔ X |= ϕ and X |= ψ

X |= ϕ ∨ ψ ⇔ Y |= ϕ and Z |= ψ for some Y ∪ Z = X

X |= ∃p ϕ ⇔ Y |= ϕ for some Y s.t Y � dom(X) = X

s |= ∀p ϕ ⇔ s(b/p) |= ϕ for all b ∈ {0, 1}

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

5/ 16

Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

X |= p ⇔ ∀s ∈ X : s(p) = 1

X |= ¬p ⇔ ∀s ∈ X : s(p) = 0

X |= ϕ ∧ ψ ⇔ X |= ϕ and X |= ψ

X |= ϕ ∨ ψ ⇔ Y |= ϕ and Z |= ψ for some Y ∪ Z = X

X |= ∃p ϕ ⇔ Y |= ϕ for some Y s.t Y � dom(X) = X

X |= ∀p ϕ ⇔ Y |= ϕ for the maximal Y s.t Y � dom(X) = X

Note that ∅ |= ϕ for every QPL-formula ϕ, and additionally:

X |= ϕ ⇔ ∀s ∈ X : s |= ϕ.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

6/ 16

Propositional Dependence, Inclusion and Independence Logic

Grammar of propositional logic PL:

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ).

Extensions PL and QPL by inclusion atoms, independence atoms, and classical
negation.

ϕ ::= p1, . . . , pn ⊆ q1, . . . , qn | ~r ⊥~p ~q | ∼ϕ.

The logics are denoted by PL[⊥c,∼], PL[⊆,∼], QPL[∼] etc.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

7/ 16

Team Sematics for the Extensions

Atoms ⊆ and ⊥c can be expressed in PL[∼] with exponential blow up. The
atom dep(·) requires just polynomial blow up to be expresssed in PL[∼].

X |= dep(~p, q) ⇔ ∀s, t ∈ X : s(~p) = t(~p)⇒ s(q) = t(q)

X |= ~p ⊆ ~q ⇔ ∀s ∈ X∃t ∈ X : s(~p) = t(~q)

X |= ~q ⊥~p ~r ⇔ ∀s, t ∈ X : if s(~p) = t(~p)

then there exists u ∈ X : u(~p~q) = s(~p~q) and u(~r) = t(~r)

X |= ∼ϕ ⇔ X 6|= ϕ

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

8/ 16

Already PL[∼] is Highly Expressive!

Most connectives studied in team sematics can be defined in PL[∼].

The connectives below can be defined in PL[∼] with polynomial blow up.

X |= ϕ 6 ψ ⇔ X |= ϕ or X |= ψ,

X |= ϕ⊗ ψ ⇔ ∀Y ,Z ⊆ X : if Y ∪ Z = X , then Y |= ϕ or Z |= ψ,

X |= ϕ→ ψ ⇔ ∀Y ⊆ X : if Y |= ϕ, then Y |= ψ,

X |= max(p1, . . . , pn) ⇔ {(s(p1), . . . , s(pn)) | s ∈ X} = {0, 1}n.

In QPL[∼] the dual ∼∃∼ is denoted by U and it has the following semantics:

X |= U p ϕ ⇔ Y |= ϕ for all Y s.t Y � dom(X) = X

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

8/ 16

Already PL[∼] is Highly Expressive!

Most connectives studied in team sematics can be defined in PL[∼].

The connectives below can be defined in PL[∼] with polynomial blow up.

X |= ϕ 6 ψ ⇔ X |= ϕ or X |= ψ,

X |= ϕ⊗ ψ ⇔ ∀Y ,Z ⊆ X : if Y ∪ Z = X , then Y |= ϕ or Z |= ψ,

X |= ϕ→ ψ ⇔ ∀Y ⊆ X : if Y |= ϕ, then Y |= ψ,

X |= max(p1, . . . , pn) ⇔ {(s(p1), . . . , s(pn)) | s ∈ X} = {0, 1}n.

In QPL[∼] the dual ∼∃∼ is denoted by U and it has the following semantics:

X |= U p ϕ ⇔ Y |= ϕ for all Y s.t Y � dom(X) = X

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

9/ 16

Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC1
1

PL[dep(·)] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP 6 in coNEXPTIMENP 6 NP 6

PL[⊆] EXPTIME 5 coNP 6 P 7

PL[⊥c,∼] AEXPTIME(poly) 6 AEXPTIME(poly) 6 PSPACE 6

PL[⊆,∼] AEXPTIME(poly) 6 AEXPTIME(poly) 6 PSPACE 6

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 V. 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hannula, Kontinen, V., Vollmer 2015, 7 Hella, Kuusisto, Meier, V.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

9/ 16

Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC1
1

PL[dep(·)] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP 6 in coNEXPTIMENP 6 NP 6

PL[⊆] EXPTIME 5 coNP 6 P 7

PL[⊥c,∼] AEXPTIME(poly) 6 AEXPTIME(poly) 6 PSPACE 6

PL[⊆,∼] AEXPTIME(poly) 6 AEXPTIME(poly) 6 PSPACE 6

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 V. 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hannula, Kontinen, V., Vollmer 2015, 7 Hella, Kuusisto, Meier, V.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

10/ 16

Complexity Results

Below ∼k means that nesting of ∼ is restricted to k . Defined analogously to
quantifier rank and modal depth.

Logic QPL[dep(·)] QPL[⊆] QPL[∼k ,dep(·)] QPL[∼k]

TRUE NEXPTIME EXPTIME between ΣEXP
k ,ΣEXP

k+1 between ΣEXP
k−2 ,Σ

EXP
k+1

Proof for QPL[dep(·)] is immediate from known results. For inclusion of
QPL[⊆] in EXPTIME, we reduce to satisfiability of modal inclusion logic
ML(⊆). For the rest we take a closer look of different characterisations of the
exponential hierarchy.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

10/ 16

Complexity Results

Below ∼k means that nesting of ∼ is restricted to k . Defined analogously to
quantifier rank and modal depth.

Logic QPL[dep(·)] QPL[⊆] QPL[∼k ,dep(·)] QPL[∼k]

TRUE NEXPTIME EXPTIME between ΣEXP
k ,ΣEXP

k+1 between ΣEXP
k−2 ,Σ

EXP
k+1

Proof for QPL[dep(·)] is immediate from known results. For inclusion of
QPL[⊆] in EXPTIME, we reduce to satisfiability of modal inclusion logic
ML(⊆). For the rest we take a closer look of different characterisations of the
exponential hierarchy.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

11/ 16

Oracle Turing Machines

The exponential-time hierarchy corresponds to the class of problems that can be
recognized by an exponential-time alternating Turing machine with constantly
many alternations.

In 1983 Orponen characterized the classes ΣEXP
k and ΠEXP

k of the exponential
time hierarchy by polynomial-time constant-alternation oracle Turing machines
that query to k oracles.

Later this was generalized to exponential-time alternating Turing machines with
polynomially many alternations (i.e. the class AEXPTIME(poly)) by allowing
queries to polynomially many oracles.

Alternation can be replaced by a sequence of word quantifiers (Chandra, Kozen,
and Stockmeyer 1981).

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

12/ 16

Characterization via Oracle Machines

The classes ΣEXP
k and ΠEXP

k of the exponential time hierarchy are characterized
by polynomial-time constant-alternation oracle Turing machines that query to k
oracles.

Theorem (Orponen 1983)

A set A belongs to the class ΣEXP
k iff there exist a polynomial-time

constant-alternating oracle Turing machine M such that, for all x ,

x ∈ A iff ∃A1 . . .QkAk(M accepts x with oracles (A1, . . . ,Ak)),

where Q2, . . . ,Qk alternate between ∃ and ∀, i.e Qi+1 ∈ {∀,∃} \ {Qi}.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

13/ 16

From oracles and machines to functions and logics

Intuitively quantification of oracles can be replaced by quantification of Boolean
functions and deterministic polynomial-time Turing machines can be replaced by
propositional logic.

Example: DQBF by Peterson, Reif, and Azha 2001

Essentially an instance of DQBF is as follows:

∃f1 . . . ∃fn∀p1 . . . ∀pkϕ(p1, . . . , pn, f1(~c1), . . . , fn(~cn)),

where ϕ is a propositional formula and ~ci is some tuple of variables from
p1, . . . , pk .

DQBF is NEXPTIME-complete.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

13/ 16

From oracles and machines to functions and logics

Intuitively quantification of oracles can be replaced by quantification of Boolean
functions and deterministic polynomial-time Turing machines can be replaced by
propositional logic.

Example: DQBF by Peterson, Reif, and Azha 2001

Essentially an instance of DQBF is as follows:

∃f1 . . . ∃fn∀p1 . . . ∀pkϕ(p1, . . . , pn, f1(~c1), . . . , fn(~cn)),

where ϕ is a propositional formula and ~ci is some tuple of variables from
p1, . . . , pk .

DQBF is NEXPTIME-complete.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

14/ 16

Functions and logics

Lohrey 2012 and Lück 2016 have characterised levels of the exponential time
hierarchy such that the alternation of function quantification corresponds to the
level of the hierarchy.

We need a variant that uses Skolem functions and thus generalises directly
DQBF.

Definition

A Σk -alternating qBf, Σk -ADQBF is a formula of the form

(∃f 1
1 . . . ∃f 1

j1)(∀f 2
1 . . . ∀f 2

j2) . . . (∃f kj1 . . . ∃f
k
jk

)∀p1 . . . ∀pnϕ(p1, . . . , f
i
j (~c ij), . . .),

where ϕ is a propositional formula and ~c ij is some tuple of variables from
p1, . . . , pn.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

14/ 16

Functions and logics

Definition

A Σk -alternating qBf, Σk -ADQBF is a formula of the form

(∃f 1
1 . . . ∃f 1

j1)(∀f 2
1 . . . ∀f 2

j2) . . . (∃f kj1 . . . ∃f
k
jk

)∀p1 . . . ∀pnϕ(p1, . . . , f
i
j (~c ij), . . .),

where ϕ is a propositional formula and ~c ij is some tuple of variables from
p1, . . . , pn.

Theorem

TRUE(Σk -ADQBF) is ΣEXP
k -complete odd k , and ΣEXP

k−1 -complete for even k .

TRUE(Πk -ADQBF) is ΠEXP
k -complete even k , and ΠEXP

k−1 -complete for odd k .
TRUE(ADQBF) is AEXPTIME(poly)-complete.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

15/ 16

From functions to team semantics

A Σk -ADQBF is a sentence

(∃f 1
1 . . . ∃f 1

j1)(∀f 2
1 . . . ∀f 2

j2) . . . (∃f kj1 . . . ∃f
k
jk

)∀p1 . . . ∀pnϕ(p1, . . . , f
i
j (~c ij), . . .)

can be written as the following QPL[∼, dep(·)]-sentence

∀p1 · · · ∀pn (∃q1
1 · · · ∃q1

j1) (Uq2
1 · · ·Uq2

j2) (∃q3
1 · · · ∃q3

j3) . . . (∃qk1 · · · ∃qkjk)

∼

[
∼(p ∧ ¬p) ∧

∧
1≤i≤k
i is even
1≤l≤ji

dep
(
c il , q

i
l

)]
∨

[(∧
1≤i≤k
i is odd

1≤l≤ji

dep
(
c il , q

i
l

))
∧ θ

]

Dependence atoms can be eliminated from above by the use of ∼.

On quantified
propositional logics

and the
exponential time

hierarchy

Jonni Virtema

Team Semantics

Quantified
propositional logic

Dependency atoms

Expressive Power

Complexity

Exponential
hierarchy

16/ 16

THANKS!

	Team Semantics
	Quantified propositional logic
	Dependency atoms
	Expressive Power
	Complexity
	Exponential hierarchy

