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Model-checking

Does a system satisfies a specification ?

?

|= ϕ

Model Formula

Challenges:

• Find expressive models

• Find logics to express interesting properties

• Find algorithms to solve the model-checking problem

Trade-off between efficiency and expressiveness

Introduction 2



Examples of Models and Specification Languages

Models

• Finite State Systems

• Infinite State Systems

• Türing machines
• Timed Automata
• Pushdown systems
• Petri nets or Vector Addition System with States (VASS)

Logics

• Linear Time Logics

• Linear Time Temporal Logic (LTL)
• Büchi automata
• Linear µ-calculus
• First order logic over words

• Branching Time Logics

• Computational Tree Logic (CTL)
• µ-calculus
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Modelling Uncertainty

Adding probabilities to models

• In pure probabilistic systems, like in Markov Chains,

non-determinism is cancelled

• In some systems, like Markov Decision Processes (MDP),
probabilities and non-determinism cohabit

• These systems can be seen as a one and half player game
• The first player, aka scheduler, resolves non-determinism and the

other player is the probabilistic player

Specification in probabilistic systems

• Qualitative specification

• Probabilities are only compared with 0 or 1
• Is a state reached with probability 1 ?
• Is the probability of seeing infinitely ofter a state strictly positive ?

• Quantitative specification

• Is the probability of an event bigger then 0.6 ?

Introduction 4



A Small Problem

??
• I have a certain number of mystery black balls

• When shining a ball, it becomes red or green with probability
one half each

• I need at least 10 green balls to win

• At each round I can pick a ball and shine it

• Question : Is there an initial number of balls which allows me to

win with probability one ?

• Question : What if at each round I can choose to increment the

number of balls or to pick a ball ?
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Which Ingredients to Solve the Problem ?

• I have a certain number of mystery black balls

⇒ Counting + non-deterministic guess

• When shining a ball, it becomes red or green with probability
one half each

⇒ Probabilities

• I need at least 10 green balls to win

⇒ Test if a counter is greater than 10
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• I need at least 10 green balls to win
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Vector Addition System with States - Markov Decision Processes
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Vector Addition System with States (VASS)

VASS

A n-dim VASS S = 〈Q,E ,q0〉 :

• Q : finite set of control states

• E ⊆ Q × Z
n × Q

• q0 ∈ Q : initial control states

q0

1
0

q1

−2
0

q2

2
1

• Set of configurations: Q × N
n - No negative value allowed!!!

• Example of runs:
(q0, (0,0)) → (q0, (1,0)) → (q0, (2,0)) → (q1, (0,0)) →
(q2, (2,1))
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Why to study VASS ?

• Models equivalent to Petri nets

• Infinite state systems with resources that can be incremented

and decremented

• Many problems are decidable for VASS

• Methods developed for this model have been reused in other

context

• Many theoretical tools available to analyse this model

• Extending VASS leads quickly to undecidable verification

problems

• Strong link with some other formalisms like for instance logics

with data
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Classical Problems for VASS

Control State Reachability (aka Coverability)

• Input: A n-dim VASS S and a control state qF

• Output: Does there exist v ∈ N
n such that (q0,0) →

∗ (qF ,v) ?

Reachability

• Input: A n-dim VASS S and a configuration (qF ,vF )

• Output: Do we have (q0,0) →
∗ (qF ,vF ) ?

Repeated Control State Reachability

• Input: A n-dim VASS S and a control state qF

• Output: Does there exist infinite v1,v2, . . . ,vi , . . . ∈ N
n such that

(q0,0) →
∗ (qF ,v1) →

+ (qF ,v2) →
+ · · · →+ (qF ,vi) · · · ?

VASS and their Toolbox 11



Well Quasi Ordering : a Nice Tool for VASS

Well Quasi Ordering (wqo)

(X ,≤) is a well-quasi ordering if for all infinite sequences s1, s2, . . .,

there exists i < j such that si ≤ sj .

Upward closed set

A set Y ⊆ X is upward closed w.r.t (X ,≤) if y ∈ Y and y ≤ y ′ implies

y ′ ∈ Y .

• Upward closure of Y ⊆ X : ↑ Y = {x ∈ X | ∃y ∈ Y ∧ y ≤ x}

Lemma

If (X ,≤) is a wqo and if Y ⊆ X is upward closed w.r.t. (X ,≤), then

there exists a finite set B ⊆ X s.t. Y =↑ B.

Stabilization Lemma

If (X ,≤) is a wqo and (Y )i∈N is a sequence of upward-closed sets

such that Yi ⊆ Yi+1, then there exists j such that Yk+1 = Yk for all

k > j .
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Properties of VASS

• Order on configurations of VASS:

(q,v) ⊑ (q′,v′) iff q = q′ and v ≤ v′

Dickson’s Lemma

(Q × N
n,⊑) is a wqo.

Monotonicity Lemma

If (q1,v1) → (q2,v2) and if v1 ≤ v′
1 then there exists v2 ≤ v′

2 such that

(q1,v
′
1) → (q2,v

′
2)

Consequences:

• For a set C ⊆ Q × N
n

Pre(C) = {(q,v) | ∃(q′,v′) ∈ C . (q,v) → (q′,v′)}

• If C is upward closed, then Pre(C) is upward-closed
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Solving Control State Reachability in VASS

• Compute the following sequence of upward-closed sets

• C0 =↑ {(qF , 0)}
• Ci+1 = Ci ∪ Pre(Ci)

• This computation is possible by reasoning always on the minimal

elements (which are finite).

• By the Stabilization Lemma, there is j ∈ N such Ck+1 = Ck for all

k ≥ j .

• Test if (q0,0) ∈ Cj .
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Solving Control State Reachability in VASS

• Compute the following sequence of upward-closed sets

• C0 =↑ {(qF , 0)}
• Ci+1 = Ci ∪ Pre(Ci)

• This computation is possible by reasoning always on the minimal

elements (which are finite).

• By the Stabilization Lemma, there is j ∈ N such Ck+1 = Ck for all

k ≥ j .

• Test if (q0,0) ∈ Cj .

This method is not optimal from the complexity point of view
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Results

Theorem [Lipton’76,Rackoff’78]

Control State Reachability in VASS is EXPSPACE-complete.

• Use short sequences of doubly exponential length to witness

control state reachability

Theorem [Kosaraju’82; Mayr’84]

Reachability in VASS is decidable.

• Non-primitive recursive algorithm

• Exact complexity is an open problem

• Shorter proof provided in [Leroux’11]

Theorem [Habermehl’97]

Repeated Control State Reachability in VASS is EXPSPACE-complete.
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Linear Temporal Logics (LTL)

Syntax

φ ::= q | ¬φ | φ ∧ φ | φ ∨ φ | φUφ | Xφ

where q ∈ Q

• Models of LTL are infinite words ρ over a finite alphabet Q

Satisfaction relation

ρ, i |= q
def
⇔ qi = q

ρ, i |= Xφ
def
⇔ i + 1 < |ρ| and ρ, i + 1 |= φ

ρ, i |= φ1Uφ2
def
⇔ for some i ≤ j < |ρ|, ρ, j |= φ2

and for all i ≤ k < j , ρ, k |= φ1

Example of properties:

• Liveness: There is a run that visits infinitely often q

• Safety: The state q is never visited
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Model-checking LTL in VASS

Model-Checking of LTL

• Input: A VASS and an LTL formula ϕ

• Output: Does there exist an infinite run ρ such that ρ,0 |= ϕ ?

Theorem [Habermehl’97]

Model-checking LTL on VASS is EXPSPACE-complete.

• Any LTL formula can be translated into a Büchi automaton

[Vardi-Wolper’86] of exponential size

• Check repeated control state reachability in the product of the

VASS and the automaton (where the automaton is parsed on the

fly)

VASS and their Toolbox 17



Can We Go Further ?
By extending the model

• VASS have only the ability to test if a counter is bigger than a

value

• It is possible to add one counter that is tested to 0

• Doing more leads to undecidability

By considering more expressive linear time logics

• The proof technique presented before works for any temporal

logic that recognizes ω-regular languages

• For instance, the model-checking of VASS with linear µ-calculus

is EXPSPACE-complete

By considering branching time logics

• Whereas for finite state systems, model-checking CTL is easier

than model-checking LTL

• In VASS, most of model-checking problems with branching time

logics are undecidable

• Anyway, we’ll see there is some ways to overcome this issue

VASS and their Toolbox 18



An Annoying Undecidability Result

Minsky machine

• Manipulates two counters c1 and c2

• Finite set of labeled instructions of the form:

1 L : ci := ci + 1; goto L′

2 L : if ci = 0 goto L′ else ci := ci − 1; goto L′′

• An initial label L0

• A special label LF with no output instruction

Halting problem: Is the label LF eventually reached?

Theorem [Minsky’67]

The halting problem for Minsky machines is undecidable.

Remark:

• VASS can simulate easily increment and decrement

• For zero-test, it is not directly possible
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Using branching time logics for zero testing

• VASS to encode L : if c1 = 0 goto L′ else c1 := c1 − 1; goto L′′

L L=0

0
0

L′

0
0

⊥

−1
0

L′′
−1
0

If the branching logic can:

• Test the existence of a run reaching LF such that at any moment,

if the VASS is in state L=0 the state ⊥ is not reachable.

⇒ the model-checking becomes undecidable
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Games and Logics

In finite state systems

• There is a connection between games and model-checking
problems

• Model-checking µ-calculus can be reduced to solving a parity

game over a system
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Games and Logics

In finite state systems

• There is a connection between games and model-checking
problems

• Model-checking µ-calculus can be reduced to solving a parity

game over a system

What about games played on the transition system of a VASS ?
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Finite-State Parity Games

Player 0

Player 1

:-) :-(

• Finite number of control states

• Every state belongs to Player 0 or Player 1

• Colors (in {1, . . . , k}) associated to each state

• Parity winning condition: Player 0 wins iff the highest color

seen infinitely often is even

Playing in VASS 23



Finite-State Parity Games

Player 0

Player 1

:-) :-(

• Finite number of control states

• Every state belongs to Player 0 or Player 1

• Colors (in {1, . . . , k}) associated to each state

• Parity winning condition: Player 0 wins iff the highest color

seen infinitely often is even

Playing in VASS 23



Finite-State Parity Games

Player 0

Player 1

:-) :-(

• Finite number of control states

• Every state belongs to Player 0 or Player 1

• Colors (in {1, . . . , k}) associated to each state

• Parity winning condition: Player 0 wins iff the highest color

seen infinitely often is even

Playing in VASS 23



Finite-State Parity Games

Player 0

Player 1

:-) :-(

• Finite number of control states

• Every state belongs to Player 0 or Player 1

• Colors (in {1, . . . , k}) associated to each state

• Parity winning condition: Player 0 wins iff the highest color

seen infinitely often is even

Playing in VASS 23



Finite-State Parity Games

Player 0

Player 1

:-) :-(

• Finite number of control states

• Every state belongs to Player 0 or Player 1

• Colors (in {1, . . . , k}) associated to each state

• Parity winning condition: Player 0 wins iff the highest color

seen infinitely often is even

Playing in VASS 23



Integer Vector Games

Player 0

Player 1

+1

+2

+3

+4

−2

+1

:-)

+1

+1

−1

0

0

0

:-(

0

0

0

0

0

0

• Adding counters C1, . . . ,Cn to the game
• Transitions can decrement and increment the counter values
• Configurations are pairs (q,v) with:

• q : control state
• v ∈ Z

n : values for the counters

Which role play the counters in the winning condition and in the
enabledness of transitions ?
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Energy Semantics

(

0
0

)

+1

+2

+3

+4

−2

+1

:-)

+1

+1

−1

0

0

0

:-(

0

0

0

0

0

0

• Transitions are always enabled regardless of the counter values

• If the value of one counter drops below 0, Player 1 wins

• Player 0 wins if no counter drops below 0 and if the parity

condition is respected

• Higher value of the counters are always better for Player 0
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VASS Semantics

(

0
0

)

+1

+2

+3

+4

−2

+1

:-)

+1

+1

−1

0

0
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0

0

0

0

0

0

• Configurations : (q,v) with v ∈ N
n

• Transitions that make a counter drop below 0 are disabled

• Player 0 wins if the parity condition is respected

• Higher value of the counters are NOT always better for
Player 0
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Problems

For I ∈ {Energy,VASS} and a game G:

• Win(G,I) = {(q,v) ∈ Q × N
n |

Player 0 has a winning strategy from (q,v)}

Unknown initial credit problem

• Input: A game G and a semantic I ∈ {Energy,VASS}

• Output: Is Win(G,I) not empty ?

Fixed initial credit problem

• Input: A game G,a semantic I ∈ {Energy,VASS} and a

configuration (q,v)

• Output: Do we have (q,v) ∈ Win(G,I)?

Computing the winning set

• Input: A game G and a semantic I ∈ {Energy,VASS}

• Output: Can we compute (and represent finitely) Win(G,I) ?
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Previous Results

Theorem [Chatterjee et al.’12]

The unknown initial credit problem is coNP-complete for energy

games.

Theorem [Abdulla et al.’03]

The fixed initial credit problem is undecidable for VASS games (even

with reachability objectives).
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Why Reachability VASS Games are Undecidable ?

• VASS to encode L : if c1 = 0 goto L′ else c1 := c1 − 1; goto L′′

L L=0

0
0

L′

0
0

:-(

−1
0

L′′
−1
0

• Player 0 chooses whether the counter is equal to 0

• If she cheats, Player 1 punishes it!!!
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Single Sided Games

Player 1 cannot change the counter values

Player 0

Player 1

+1

+2

+3

+4

:-)

−1

0

0

0

:-(

0

0

0

0
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Single Sided Games

Player 1 cannot change the counter values

Player 0

Player 1

+1

+2

+3

+4

:-)

−1

0

0

0

:-(

0

0

0

0

CPre(C) =
{(q,v) | q is © and ∃(q′,v′) ∈ C.(q,v) → (q′,v′)}∪

{(q,v) | q is � and (q,v) → (q′,v′) implies (q,v′) ∈ C}

If C is upward-closed then CPre(C) is upward-closed
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Results for Single Sided Games

Theorem [Raskin et al.’04]

The fixed initial credit problem is decidable for single-sided VASS

games with reachability objectives.

Proposition [Abdulla et al.’13]

For energy games and single-sided VASS games, the winning regions

are upward closed.

• What Player 0 can achieve with some values, she can achieve it

as well with bigger values !
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From energy games to single-sided games

+1

+2

+3

+4

:-)

−2

+1

0

0

:-(

0

0

0

0

+1

+2

+3

+4

:-)

−2

+1

0

0

:-(

0

0

0

0

:-(

0

0

Proposition [Abdulla et al.’13]

Energy games and single-sided VASS games are PTIME inter-

reducible.
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Results

Theorem [Abdulla et al.’13]

For single-sided VASS games, the minimal elements of the winning

sets are computable.

• The proof is done by induction on the dimension of the VASS

games
• It refined an over-approximation of the winning set at each step
• At each step, it builds a finite state games where the states are

labelled with some counter values and ω (standing for any values

is accepted)
• It is inspired by the Karp and Miller coverability graph

Corollary [Abdulla et al.’13]

For energy games, the minimal elements of the winning sets are com-

putable.

Hence, for single-sided VASS games and energy games we can

solve:

• The unknown initial credit problem
• The fixed initial credit problem
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Back to logic

µ-calculus syntax

φ ::= q | X | φ ∧ φ | φ ∨ φ | ♦φ | �φ | µX .φ | νX .φ

where q is a control state of the VASS.

• Each closed formula φ characterizes a set of configurations JφK

• µX .♦X ∨ q is the least fixpoint of the function f : X 7→ J♦X K ∪ JqK
where:

• J♦XK is the set of configurations that have a sucessor in X
• JqK is the set of configurations {(q, v) | v ∈ N

n}

• νX stands for greatest fixpoint

• �X stands for all successors are in X

• µX .♦X ∨ qF represents the configurations that can reach qF

Model-checking of µ-calculus

• Input: A VASS and a closed µ-calculus formula φ

• Output: Does (q0,0) ∈ JφK ?
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Results

Theorem

The model-checking µ-calculus on VASS is undecidable.

• Single-Sided VASS S = 〈Q,Q0,Q1,E ,q0〉 :

• 〈Q,E , q0〉 is VASS
• Q0 ⊎ Q1 is a partition of Q
• for all (q, v, q′) ∈ E if q ∈ Q1 then v = 0

• Guarded fragment of µ-calculus : replace �X with Q1 ∧�X

Theorem [Abdulla et al.’13]

Model-checking the guarded fragment of µ-calculus on single-sided

VASS is decidable.

• The model-checking problem can be translated to a Single-Sided

VASS parity game

• The translation is similar to the one in finite state systems

• The guard is necessary since states of Player 1 correspond to

the operator �X
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Probabilistic VASS (PVASS)

PVASS

A n-dim PVASS S = 〈Q,E ,q0,w〉 is a VASS 〈Q,E ,q0〉 equipped with

a weight function w : E 7→ N \ {0}.

• The semantics of a PVASS is a Markov Chain

• The probability to go from (q,v) to (q′,v′) is equal to

w(q,v′ − v,q′)

Σ{e=(q,v′′,q′′)∈E}w(e)

q0

1
0

q1

−2
0

q2

2
1

• If the weight of each transition is 1

• Then (q0, (0,0)) goes to (q0, (1,0)) with probability 1

• And (q0, (2,0)) goes to (q0, (3,0)) with probability 1
2

and to

(q1, (0,0)) with probability 1
2
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Classical problems in PVASS

• For an event E , characterizing a set of runs, we denote by P(E)
the probability of E in the Markov Chain of the VASS

• Let ♦q be the set of runs reaching q

• Let �♦q be the set of runs visiting q infinitely often

Almost Sure Control State Reachability

• Input: A PVASS S and a control state qF

• Output: Do we have P(♦qF ) = 1 ?

Almost Sure Control State Repeated Reachability

• Input: A PVASS S and a control state qF

• Output: Do we have P(�♦qF ) = 1 ?
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A nice property of PVASS

• Let
∼
qF represent the configurations that cannot reach qF

• Let ♦
∼
qF be the runs that reach such a configurations

Lemma (Decisive Markov Chains) [Abdulla et al.’07]

In PVASS, we have P(♦qF ∨ ♦
∼
qF ) = 1

• In other words, a run that always visits states from which qF can

be reached without visiting qF has probability 0

• All the states s′ in a run in ¬(♦qF ∨ ♦
∼
qF ) are in ¬

∼
qF

• They never visit qF nor
∼
qF

• Hence from all this states qF is reachable in a bounded number

of steps (the computing of predecessors is bounded by k)

• Hence from all this states the probability to reach qF is greater

than mk ( where m is the minimum possible probability)

• This allows to deduce that P(¬(♦qF ∨ ♦
∼
qF )) ≤ (1 − mk )∞ = 0
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Which Markov Chains are Decisive ?

• When is the property P(♦qF ∨ ♦
∼
qF ) = 1 satisfied ?

• It is true in finite states Markov chains

• It holds for some infinite states Markov chains, for instance

Probabilistic Lossy Channel Systems

• It does not hold for all infinite states Markov chains, for instance

the gambler ruin :

01 1

0.3

2

0.3

0.7
3

0.3

0.7
· · ·

Probability to reach 0 from 1 strictly smaller than 1.
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Results

Theorem [Abdulla et al.’07]

Almost Sure Control State Reachability is decidable in PVASS

• P(♦qF ) = 1 iff from (q0,0) it is not possible to reach
∼
qF without

seing qF

•
∼
qF is the complement of an upward closed set of configurations

(the complement of the predecessors of qF )

• To test this, remove the outgoing edge of qF and test whether a

state in
∼
qF can be reached

• This reduces to reachability in VASS
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Results

Theorem [Abdulla et al.’07]

Almost Sure Control State Reachability is decidable in PVASS

• P(♦qF ) = 1 iff from (q0,0) it is not possible to reach
∼
qF without

seing qF

•
∼
qF is the complement of an upward closed set of configurations

(the complement of the predecessors of qF )

• To test this, remove the outgoing edge of qF and test whether a

state in
∼
qF can be reached

• This reduces to reachability in VASS

Theorem [Abdulla et al.’07]

Almost Sure Repeated Control State Reachability is decidable in

PVASS
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VASS Markov Decision Processes (VASS-MDP)

VASS-MDP

A n-dim VASS-MDP S = 〈Q,Q0,QP ,E ,q0,w〉 is a VASS 〈Q,E ,q0〉
equipped with :

• a weight function w : E 7→ N \ {0}

• Q0 ⊎ QP forms a partition of Q between non-deterministic states

Q0 and probabilistic states QP .

• The weight function matters only for transitions leaving

probabilistic states.

• The semantics is given in term of a Markov Decision Process

• A scheduler σ ∈ Σ resolves non-determinism
• It assigns to each finite run ending in a state of Q0 a successor

configuration.

Player 0 q0

0

qF
0

q1

+1

q2
0

-1

qF
−1
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Classical Problems in VASS-MDP

• Once a strategy σ is given we get a Markov Chain

• We will denote P
σ(E) the probability of event E in the Markov

chain obtained when considering σ

Almost Sure Control State Reachability

• Input: A VASS-MDP S and a control state qF

• Output: Does there exist σ such that Pσ(♦qF ) = 1 ?

Almost Sure Control State Repeated Reachability

• Input: A VASS-MDP S and a control state qF

• Output: Does there exist σ such that Pσ(�♦qF ) = 1 ?

• There are as well the Limit Sure versions supσ∈ΣP
σ(♦qF ) = 1

and supσ∈ΣP
σ(�♦qF ) = 1 ?

• Limit Sure and Almost Sure problems are equivalent in finite

state systems but not in our case!
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Examples

q0

0

qF
0

q1

+1

q2
0

-1

qF
−1

• From (q0,0), the state qF is reached almost surely

• From (q1,0), the state qF is reached limit surely but not almost

surely
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Always the Same Trick Leads to Undecidability

Theorem

Almost Sure (Repeated) Control State Reachability is undecidable for

VASS-MDP.

• VASS-MPD to encode L : if c1 = 0 goto L′ else c1 := c1 − 1; goto

L′′

L L=0

0
0

L′

0
0

:-(

−1
0

L′′
−1
0

• Here each transition has weight 1
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How to Regain Decidability ?

In finite states MDP:

• Almost-sure (repeated) reachability is decidable

• One can characterize the winning configurations by a µ-calculus

formula [Chatterjee et al.’09]
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How to Regain Decidability ?

In finite states MDP:

• Almost-sure (repeated) reachability is decidable

• One can characterize the winning configurations by a µ-calculus

formula [Chatterjee et al.’09]

For VASS:

• We just see some restrictions leading to decidability of a

µ-calculus fragment

Does this allow us to obtain some results ?
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Single Sided VASS-MDP

• In Single Sided VASS-MDPs, Player P cannot change the

counter values

• Hence the underlying VASS is as well single sided

What needs to be done to get the results ?

1 Prove that there exists a µ-calculus formula characterizing the

winning configurations

2 Prove that this formula belongs to the guarded fragment!
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One Last Effort

• Take the formula

InvPre(X ,Y ) = (Q0 ∧ ♦(X ∧ Y )) ∨ (♦Y ∧ QP ∧�X )

• It represents the set of states from which Player 0 can go to X

and Y and Player P can go to Y and cannot go out of X

• Now the formula νX .µY .
(

qF ∨ InvPre(X ,Y )
)

• It represents the configurations that can reach almost surely qF .

• Warning: This is true only because we have VASS, in other

infinite state systems, this does not hold!

• In fact, in this set Player 0 can reach qF in N steps and Player 0

cannot take him out of this set.

Theorem [Abdulla et al.’16]

Almost Sure (Repeated) Control State Reachability is decidable in Sin-

gle Sided VASS-MDP.

• We also show that Limit Sure Reachability is decidable in Single

Sided VASS-MDP, but with a different proof.
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Now and Then

To sum up

• Restricting the ’universal’ or ’probabilistic’ player in VASS leads

to decidability

• Some techniques of the finite state world can be adapted to

VASS due to the ’short path to reach a state’ property

• I have a way to solve my original problem automatically :-)

What’s next

• What about quantitative verification ... it’s an hard problem

• Application to Parameterized Verification

• Other games might be decidable with a limited choice for Player

P ... (and reachability objectives not restricted to control states).
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