Fixpoints in VASS: Results and Applications

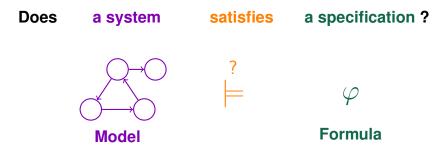
Arnaud Sangnier

IRIF - Université Paris Diderot

joint works with : Parosh A. Abdulla, Radu Ciobanu, Richard Mayr and Jeremy Sproston

Gandalf'16 - 16th September 2016

Model-checking



Challenges:

- Find expressive models
- Find logics to express interesting properties
- Find algorithms to solve the model-checking problem

Trade-off between efficiency and expressiveness

Examples of Models and Specification Languages

Models

- Finite State Systems
- Infinite State Systems
 - Türing machines
 - Timed Automata
 - Pushdown systems
 - Petri nets or Vector Addition System with States (VASS)

Logics

Linear Time Logics

- Linear Time Temporal Logic (LTL)
- Büchi automata
- Linear µ-calculus
- First order logic over words

Branching Time Logics

- Computational Tree Logic (CTL)
- μ-calculus

Examples of Models and Specification Languages

Models

- Finite State Systems
- Infinite State Systems
 - Türing machines
 - Timed Automata
 - Pushdown systems
 - Petri nets or Vector Addition System with States (VASS)

Logics

Linear Time Logics

- Linear Time Temporal Logic (LTL)
- Büchi automata
- Linear µ-calculus
- First order logic over words

Branching Time Logics

- Computational Tree Logic (CTL)
- μ-calculus

Modelling Uncertainty

Adding probabilities to models

- In pure probabilistic systems, like in Markov Chains, non-determinism is cancelled
- In some systems, like Markov Decision Processes (MDP), probabilities and non-determinism cohabit
 - These systems can be seen as a one and half player game
 - The first player, aka **scheduler**, resolves non-determinism and the other player is the probabilistic player

Specification in probabilistic systems

- Qualitative specification
 - Probabilities are only compared with 0 or 1
 - Is a state reached with probability 1 ?
 - Is the probability of seeing infinitely ofter a state strictly positive ?

Quantitative specification

Is the probability of an event bigger then 0.6 ?

A Small Problem

- I have a certain number of mystery black balls
- When shining a ball, it becomes red or green with probability one half each
- I need at least **10** green balls to win
- At each round I can pick a ball and shine it
- Question : Is there an initial number of balls which allows me to win with probability one ?
- Question : What if at each round I can choose to increment the number of balls or to pick a ball ?

A Small Problem

- I have a certain number of mystery black balls
- When shining a ball, it becomes red or green with probability one half each
- I need at least **10** green balls to win
- At each round I can pick a ball and shine it
- Question : Is there an initial number of balls which allows me to win with probability one ?
- Question : What if at each round I can choose to increment the number of balls or to pick a ball ?

A Small Problem

- I have a certain number of mystery black balls
- When shining a ball, it becomes red or green with probability one half each
- I need at least **10** green balls to win
- At each round I can pick a ball and shine it
- Question : Is there an initial number of balls which allows me to win with probability one ?
- Question : What if at each round I can choose to increment the number of balls or to pick a ball ?

Which Ingredients to Solve the Problem ?

- I have a certain number of mystery black balls
 - ⇒ Counting + non-deterministic guess
- When shining a ball, it becomes red or green with probability one half each
 - ⇒ Probabilities
- I need at least 10 green balls to win
 - ⇒ Test if a counter is greater than 10

Which Ingredients to Solve the Problem ?

• I have a certain number of mystery black balls

- ⇒ Counting + non-deterministic guess
- When shining a ball, it becomes red or green with probability one half each

⇒ Probabilities

- I need at least 10 green balls to win
 - ⇒ Test if a counter is greater than 10

Vector Addition System with States - Markov Decision Processes

Outline

- **2** Playing in VASS
- **3** Qualitative Analysis of Probabilistic VASS
- Probabilities and Non-Determinism in VASS

5 Conclusion

Outline

1 VASS and their Toolbox

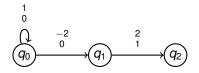
- **2** Playing in VASS
- **3** Qualitative Analysis of Probabilistic VASS
- Probabilities and Non-Determinism in VASS

5 Conclusion

Vector Addition System with States (VASS)

VASS

- A *n*-dim VASS $S = \langle Q, E, q_0 \rangle$:
 - Q : finite set of control states
 - $E \subseteq Q \times \mathbb{Z}^n \times Q$
 - $q_0 \in Q$: initial control states



- Set of configurations: *Q* × ℕ^{*n*} No negative value allowed!!!
- Example of runs:

 $(q_0,(0,0)) o (q_0,(1,0)) o (q_0,(2,0)) o (q_1,(0,0)) o (q_2,(2,1))$

Why to study VASS ?

- Models equivalent to Petri nets
- Infinite state systems with resources that can be incremented and decremented
- Many problems are decidable for VASS
- Methods developed for this model have been reused in other context
- Many theoretical tools available to analyse this model
- Extending VASS leads quickly to undecidable verification problems
- Strong link with some other formalisms like for instance logics with data

Classical Problems for VASS

Control State Reachability (aka Coverability)

- Input: A n-dim VASS S and a control state q_F
- Output: Does there exist $\mathbf{v} \in \mathbb{N}^n$ such that $(q_0, \mathbf{0}) \rightarrow^* (q_F, \mathbf{v})$?

Reachability

- Input: A *n*-dim VASS S and a configuration (q_F, \mathbf{v}_F)
- Output: Do we have $(q_0, \mathbf{0}) \rightarrow^* (q_F, \mathbf{v}_F)$?

Repeated Control State Reachability

- Input: A n-dim VASS S and a control state q_F
- **Output:** Does there exist infinite $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_i, \dots \in \mathbb{N}^n$ such that $(q_0, \mathbf{0}) \rightarrow^* (q_F, \mathbf{v}_1) \rightarrow^+ (q_F, \mathbf{v}_2) \rightarrow^+ \dots \rightarrow^+ (q_F, \mathbf{v}_i) \dots$?

Well Quasi Ordering : a Nice Tool for VASS

Well Quasi Ordering (wqo)

 (X, \leq) is a well-quasi ordering if for all infinite sequences s_1, s_2, \ldots , there exists i < j such that $s_i \leq s_j$.

Upward closed set

A set $Y \subseteq X$ is upward closed w.r.t (X, \leq) if $y \in Y$ and $y \leq y'$ implies $y' \in Y$.

• Upward closure of $Y \subseteq X$: $\uparrow Y = \{x \in X \mid \exists y \in Y \land y \leq x\}$

Lemma

If (X, \leq) is a wqo and if $Y \subseteq X$ is upward closed w.r.t. (X, \leq) , then there exists a finite set $B \subseteq X$ s.t. $Y = \uparrow B$.

Stabilization Lemma

If (X, \leq) is a wqo and $(Y)_{i \in \mathbb{N}}$ is a sequence of upward-closed sets such that $Y_i \subseteq Y_{i+1}$, then there exists *j* such that $Y_{k+1} = Y_k$ for all k > j.

Properties of VASS

• Order on configurations of VASS:

 $(q, \mathbf{v}) \sqsubseteq (q', \mathbf{v}')$ iff q = q' and $\mathbf{v} \le \mathbf{v}'$

Dickson's Lemma

 $(Q \times \mathbb{N}^n, \sqsubseteq)$ is a wqo.

Monotonicity Lemma

If $(q_1, \mathbf{v}_1) \to (q_2, \mathbf{v}_2)$ and if $\mathbf{v}_1 \le \mathbf{v}_1'$ then there exists $\mathbf{v}_2 \le \mathbf{v}_2'$ such that $(q_1, \mathbf{v}_1') \to (q_2, \mathbf{v}_2')$

Consequences:

• For a set $\mathcal{C} \subseteq \mathcal{Q} \times \mathbb{N}^n$

 $\textit{Pre}(\textit{C}) = \{(q, \textbf{v}) \mid \exists (q', \textbf{v}') \in \textit{C} . (q, \textbf{v}) \rightarrow (q', \textbf{v}') \}$

• If C is upward closed, then Pre(C) is upward-closed

Solving Control State Reachability in VASS

Compute the following sequence of upward-closed sets

•
$$C_0 = \uparrow \{(q_F, \mathbf{0})\}$$

•
$$C_{i+1} = C_i \cup Pre(C_i)$$

- This computation is possible by reasoning always on the minimal elements (which are finite).
- By the Stabilization Lemma, there is $j \in \mathbb{N}$ such $C_{k+1} = C_k$ for all $k \ge j$.
- Test if (*q*₀, **0**) ∈ *C_j*.

Solving Control State Reachability in VASS

Compute the following sequence of upward-closed sets

•
$$C_0 = \uparrow \{(q_F, \mathbf{0})\}$$

•
$$C_{i+1} = C_i \cup Pre(C_i)$$

- This computation is possible by reasoning always on the minimal elements (which are finite).
- By the Stabilization Lemma, there is $j \in \mathbb{N}$ such $C_{k+1} = C_k$ for all $k \ge j$.
- Test if (*q*₀, **0**) ∈ *C_j*.

This method is not optimal from the complexity point of view

Results

Theorem

[Lipton'76,Rackoff'78]

Control State Reachability in VASS is EXPSPACE-complete.

 Use short sequences of doubly exponential length to witness control state reachability

Theorem

[Kosaraju'82; Mayr'84]

Reachability in VASS is decidable.

- Non-primitive recursive algorithm
- Exact complexity is an open problem
- Shorter proof provided in [Leroux'11]

Theorem

[Habermehl'97]

Repeated Control State Reachability in VASS is EXPSPACE-complete.

Linear Temporal Logics (LTL)

Syntax

$$\phi ::= \boldsymbol{q} \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \mathsf{U} \phi \mid \mathsf{X} \phi$$

where $q \in Q$

Satisfaction relation

$$\begin{array}{ll}
\rho, i \models q & \stackrel{\text{def}}{\Leftrightarrow} & q_i = q \\
\rho, i \models \chi \phi & \stackrel{\text{def}}{\Leftrightarrow} & i+1 < |\rho| \text{ and } \rho, i+1 \models \phi \\
i \models \phi_1 \cup \phi_2 & \stackrel{\text{def}}{\Leftrightarrow} & \text{for some } i \le j < |\rho|, \rho, j \models \phi_2 \\
& \text{and for all } i \le k < i, \rho, k \models \phi
\end{array}$$

Example of properties:

 ρ

- Liveness: There is a run that visits infinitely often q
- Safety: The state q is never visited

Model-checking LTL in VASS

Model-Checking of LTL

- Input: A VASS and an LTL formula φ
- **Output:** Does there exist an infinite run ρ such that ρ , **0** $\models \varphi$?

Theorem

[Habermehl'97]

Model-checking LTL on VASS is EXPSPACE-complete.

- Any LTL formula can be translated into a Büchi automaton [Vardi-Wolper'86] of exponential size
- Check repeated control state reachability in the product of the VASS and the automaton (where the automaton is parsed *on the fly*)

Can We Go Further ?

By extending the model

- VASS have only the ability to test if a counter is bigger than a value
- It is possible to add one counter that is tested to 0
- Doing more leads to undecidability

By considering more expressive linear time logics

- The proof technique presented before works for any temporal logic that recognizes ω -regular languages
- For instance, the model-checking of VASS with linear μ -calculus is EXPSPACE-complete

By considering branching time logics

- Whereas for finite state systems, model-checking CTL is easier than model-checking LTL
- In VASS, most of model-checking problems with branching time logics are undecidable
- Anyway, we'll see there is some ways to overcome this issue

An Annoying Undecidability Result

Minsky machine

- Manipulates two counters c₁ and c₂
- Finite set of labeled instructions of the form:

1 $L: c_i := c_i + 1;$ goto L'

2 L : if $c_i = 0$ goto L' else $c_i := c_i - 1$; goto L''

- An initial label L₀
- A special label L_F with no output instruction

Halting problem: Is the label *L_F* eventually reached?

Theorem

[Minsky'67]

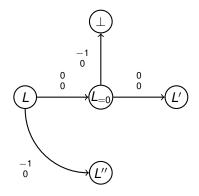
The halting problem for Minsky machines is undecidable.

Remark:

- VASS can simulate easily increment and decrement
- · For zero-test, it is not directly possible

Using branching time logics for zero testing

VASS to encode *L* : if *c*₁ = 0 goto *L*′ else *c*₁ := *c*₁ − 1; goto *L*″



If the branching logic can:

- Test the existence of a run reaching *L_F* such that at any moment, if the VASS is in state *L*₌₀ the state ⊥ is not reachable.
- \Rightarrow the model-checking becomes undecidable

Outline

1 VASS and their Toolbox

2 Playing in VASS

- **3** Qualitative Analysis of Probabilistic VASS
- Probabilities and Non-Determinism in VASS

5 Conclusion

Games and Logics

In finite state systems

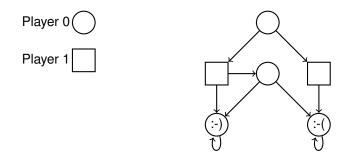
- There is a connection between games and model-checking
 problems
- Model-checking $\mu\text{-calculus}$ can be reduced to solving a parity game over a system

Games and Logics

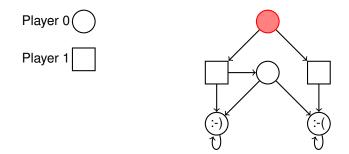
In finite state systems

- There is a connection between games and model-checking
 problems
- Model-checking $\mu\text{-calculus}$ can be reduced to solving a parity game over a system

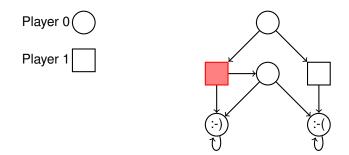
What about games played on the transition system of a VASS ?



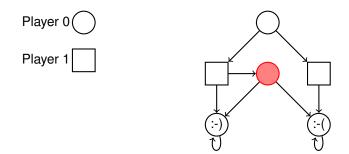
- Finite number of control states
- Every state belongs to Player 0 or Player 1
- Colors (in {1,...,k}) associated to each state
- Parity winning condition: Player 0 wins iff the highest color seen infinitely often is even



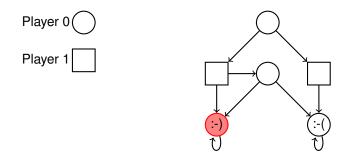
- Finite number of control states
- Every state belongs to Player 0 or Player 1
- Colors (in {1,...,k}) associated to each state
- Parity winning condition: Player 0 wins iff the highest color seen infinitely often is even



- Finite number of control states
- Every state belongs to Player 0 or Player 1
- Colors (in {1,...,k}) associated to each state
- Parity winning condition: Player 0 wins iff the highest color seen infinitely often is even

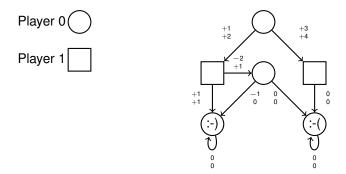


- Finite number of control states
- Every state belongs to Player 0 or Player 1
- Colors (in {1,...,k}) associated to each state
- Parity winning condition: Player 0 wins iff the highest color seen infinitely often is even



- Finite number of control states
- Every state belongs to Player 0 or Player 1
- Colors (in {1,...,k}) associated to each state
- Parity winning condition: Player 0 wins iff the highest color seen infinitely often is even

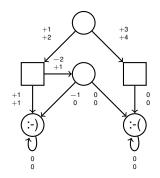
Integer Vector Games



- Adding counters C_1, \ldots, C_n to the game
- Transitions can decrement and increment the counter values
- Configurations are pairs (q, v) with:
 - q : control state
 - $\mathbf{v} \in \mathbb{Z}^n$: values for the counters

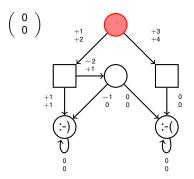
Which role play the counters in the winning condition and in the enabledness of transitions ?

Energy Semantics



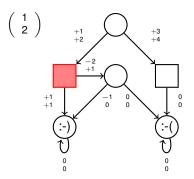
- Transitions are always enabled regardless of the counter values
- If the value of one counter drops below 0, Player 1 wins
- Player 0 wins if no counter drops below 0 and if the parity condition is respected
- Higher value of the counters are always better for Player 0

Energy Semantics



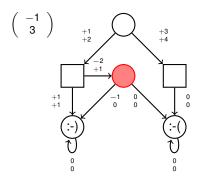
- Transitions are always enabled regardless of the counter values
- If the value of one counter drops below 0, Player 1 wins
- Player 0 wins if no counter drops below 0 and if the parity condition is respected
- Higher value of the counters are always better for Player 0

Energy Semantics

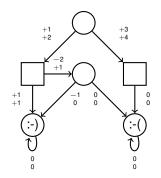


- Transitions are always enabled regardless of the counter values
- If the value of one counter drops below 0, Player 1 wins
- Player 0 wins if no counter drops below 0 and if the parity condition is respected
- Higher value of the counters are always better for Player 0

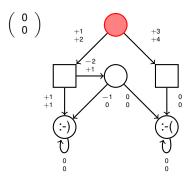
Energy Semantics



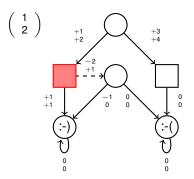
- Transitions are always enabled regardless of the counter values
- If the value of one counter drops below 0, Player 1 wins
- Player 0 wins if no counter drops below 0 and if the parity condition is respected
- Higher value of the counters are always better for Player 0



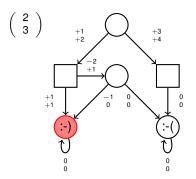
- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0



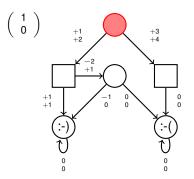
- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0



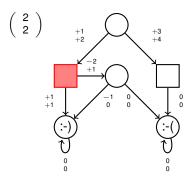
- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0



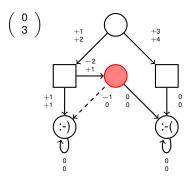
- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0



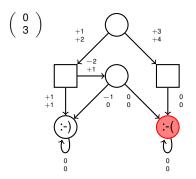
- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0



- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0



- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0



- Configurations : (q, \mathbf{v}) with $\mathbf{v} \in \mathbb{N}^n$
- Transitions that make a counter drop below 0 are disabled
- Player 0 wins if the parity condition is respected
- Higher value of the counters are NOT always better for Player 0

Problems

For $\mathtt{I} \in \{\mathtt{Energy}, \mathtt{VASS}\}$ and a game $\mathcal{G} \texttt{:}$

• $Win(G, I) = \{(q, \mathbf{v}) \in Q \times \mathbb{N}^n \mid Player 0 \text{ has a winning strategy from } (q, \mathbf{v})\}$

Unknown initial credit problem

- Input: A game \mathcal{G} and a semantic $I \in \{\text{Energy}, \text{VASS}\}$
- Output: Is Win(G, I) not empty ?

Fixed initial credit problem

- Input: A game G, a semantic I ∈ {Energy, VASS} and a configuration (q, V)
- Output: Do we have (q, v) ∈ Win(G, I)?

Computing the winning set

- Input: A game \mathcal{G} and a semantic $I \in \{\text{Energy}, \text{VASS}\}$
- Output: Can we compute (and represent finitely) Win(G, I) ?

Previous Results

Theorem

[Chatterjee et al.'12]

The unknown initial credit problem is ${\tt coNP}\mbox{-}complete$ for energy games.

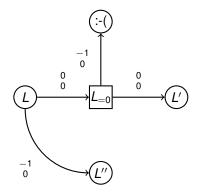
Theorem

[Abdulla et al.'03]

The fixed initial credit problem is undecidable for VASS games (even with reachability objectives).

Why Reachability VASS Games are Undecidable ?

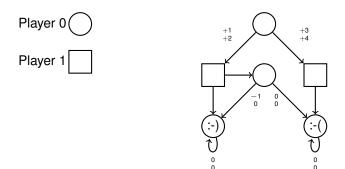
VASS to encode *L* : if *c*₁ = 0 goto *L*′ else *c*₁ := *c*₁ − 1; goto *L*″



- Player 0 chooses whether the counter is equal to 0
- If she cheats, Player 1 punishes it!!!

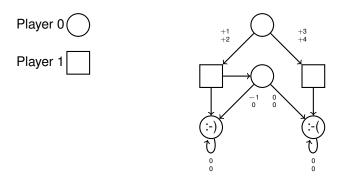
Single Sided Games

Player 1 cannot change the counter values



Single Sided Games

Player 1 cannot change the counter values



 $CPre(C) = \{(q, \mathbf{v}) \mid q \text{ is } \bigcirc \text{ and } \exists (q', \mathbf{v}') \in C.(q, \mathbf{v}) \rightarrow (q', \mathbf{v}') \} \cup \{(q, \mathbf{v}) \mid q \text{ is } \Box \text{ and } (q, \mathbf{v}) \rightarrow (q', \mathbf{v}') \text{ implies } (q, \mathbf{v}') \in C \}$

If C is upward-closed then CPre(C) is upward-closed

Results for Single Sided Games

Theorem

[Raskin et al.'04]

The fixed initial credit problem is decidable for single-sided VASS games with reachability objectives.

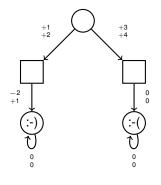
Proposition

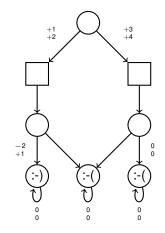
[Abdulla et al.'13]

For energy games and single-sided VASS games, the winning regions are upward closed.

 What Player 0 can achieve with some values, she can achieve it as well with bigger values !

From energy games to single-sided games





Proposition

[Abdulla et al.'13]

Energy games and single-sided VASS games are PTIME interreducible.

Results

Theorem

[Abdulla et al.'13]

For single-sided VASS games, the minimal elements of the winning sets are computable.

- The proof is done by induction on the dimension of the VASS games
- It refined an over-approximation of the winning set at each step
- At each step, it builds a finite state games where the states are labelled with some counter values and ω (standing for any values is accepted)
- It is inspired by the Karp and Miller coverability graph

Corollary

[Abdulla et al.'13]

For energy games, the minimal elements of the winning sets are computable.

Hence, for single-sided VASS games and energy games we can solve:

- The unknown initial credit problem
- The fixed initial credit problem

Back to logic

μ -calculus syntax

 $\phi ::= q \mid X \mid \phi \land \phi \mid \phi \lor \phi \mid \Diamond \phi \mid \Box \phi \mid \mu X.\phi \mid \nu X.\phi$

where q is a control state of the VASS.

- Each closed formula φ characterizes a set of configurations [[φ]]
- μX.◊X ∨ q is the least fixpoint of the function f : X ↦ [[◊X]] ∪ [[q]] where:
 - $[\langle X]]$ is the set of configurations that have a successor in X
 - $\llbracket q \rrbracket$ is the set of configurations $\{(q, \mathbf{v}) \mid \mathbf{v} \in \mathbb{N}^n\}$
- νX stands for greatest fixpoint
- $\Box X$ stands for all successors are in X
- $\mu X.\Diamond X \lor q_F$ represents the configurations that can reach q_F

Model-checking of μ -calculus

- Input: A VASS and a closed μ -calculus formula ϕ
- Output: Does $(q_0, \mathbf{0}) \in \llbracket \phi \rrbracket$?

Results

Theorem

The model-checking μ -calculus on VASS is undecidable.

- Single-Sided VASS $S = \langle Q, Q_0, Q_1, E, q_0 \rangle$:
 - $\langle Q, E, q_0 \rangle$ is VASS
 - $Q_0 \uplus Q_1$ is a partition of Q
 - for all $(q, \mathbf{v}, q') \in E$ if $q \in Q_1$ then $\mathbf{v} = \mathbf{0}$
- Guarded fragment of μ -calculus : replace $\Box X$ with $Q_1 \land \Box X$

Theorem

[Abdulla et al.'13]

Model-checking the guarded fragment of $\mu\text{-}calculus$ on single-sided VASS is decidable.

- The model-checking problem can be translated to a Single-Sided VASS parity game
- The translation is similar to the one in finite state systems
- The guard is necessary since states of Player 1 correspond to the operator □*X*

Outline

1 VASS and their Toolbox

2 Playing in VASS

3 Qualitative Analysis of Probabilistic VASS

Probabilities and Non-Determinism in VASS

5 Conclusion

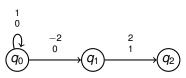
Probabilistic VASS (PVASS)

PVASS

A *n*-dim PVASS $S = \langle Q, E, q_0, w \rangle$ is a VASS $\langle Q, E, q_0 \rangle$ equipped with a weight function $w : E \mapsto \mathbb{N} \setminus \{0\}$.

- The semantics of a PVASS is a Markov Chain
- The probability to go from (q, \mathbf{v}) to (q', \mathbf{v}') is equal to

$$\frac{w(q,\mathbf{v}'-\mathbf{v},q')}{\sum_{\{e=(q,\mathbf{v}'',q'')\in E\}}w(e)}$$



- If the weight of each transition is 1
- Then (*q*₀, (0, 0)) goes to (*q*₀, (1, 0)) with probability 1
- And $(q_0, (2, 0))$ goes to $(q_0, (3, 0))$ with probability $\frac{1}{2}$ and to $(q_1, (0, 0))$ with probability $\frac{1}{2}$

Classical problems in PVASS

- For an event *E*, characterizing a set of runs, we denote by P(*E*) the probability of *E* in the Markov Chain of the VASS
- Let ◊q be the set of runs reaching q
- Let $\Box \Diamond q$ be the set of runs visiting q infinitely often

Almost Sure Control State Reachability

- Input: A PVASS S and a control state q_F
- **Output:** Do we have $\mathbb{P}(\Diamond q_F) = 1$?

Almost Sure Control State Repeated Reachability

- Input: A PVASS S and a control state q_F
- **Output:** Do we have $\mathbb{P}(\Box \Diamond q_F) = 1$?

A nice property of PVASS

- Let $\overset{\sim}{q_F}$ represent the configurations that cannot reach q_F
- Let $\Diamond \overset{\sim}{q_F}$ be the runs that reach such a configurations

Lemma (Decisive Markov Chains)

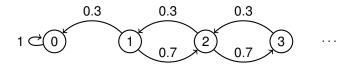
[Abdulla et al.'07]

In PVASS, we have $\mathbb{P}(\Diamond q_F \lor \Diamond q_F) = 1$

- In other words, a run that always visits states from which q_F can be reached without visiting q_F has probability 0
- All the states s' in a run in $\neg(\Diamond q_F \lor \Diamond \widetilde{q_F})$ are in $\neg \widetilde{q_F}$
- They never visit q_F nor $\overset{\sim}{q_F}$
- Hence from all this states q_F is reachable in a bounded number of steps (the computing of predecessors is bounded by k)
- Hence from all this states the probability to reach q_F is greater than m^k (where m is the minimum possible probability)
- This allows to deduce that $\mathbb{P}(\neg(\Diamond q_F \lor \Diamond \widetilde{q_F})) \leq (1-m^k)^\infty = 0$

Which Markov Chains are Decisive ?

- When is the property $\mathbb{P}(\Diamond q_F \lor \Diamond \widetilde{q_F}) = 1$ satisfied ?
- It is true in finite states Markov chains
- It holds for some infinite states Markov chains, for instance Probabilistic Lossy Channel Systems
- It does not hold for all infinite states Markov chains, for instance the gambler ruin :



Probability to reach 0 from 1 strictly smaller than 1.

Results

Theorem

[Abdulla et al.'07]

Almost Sure Control State Reachability is decidable in PVASS

- 𝒫(◊*q_F*) = 1 iff from (*q*₀, **0**) it is not possible to reach *q_F* without seing *q_F*
- $\widetilde{q_F}$ is the complement of an upward closed set of configurations (the complement of the predecessors of q_F)
- To test this, remove the outgoing edge of q_F and test whether a state in q_F can be reached
- This reduces to reachability in VASS

Results

Theorem

[Abdulla et al.'07]

Almost Sure Control State Reachability is decidable in PVASS

- 𝒫(◊*q_F*) = 1 iff from (*q*₀, **0**) it is not possible to reach *q_F* without seing *q_F*
- $\widetilde{q_F}$ is the complement of an upward closed set of configurations (the complement of the predecessors of q_F)
- To test this, remove the outgoing edge of q_F and test whether a state in q_F can be reached
- This reduces to reachability in VASS

Theorem

[Abdulla et al.'07]

Almost Sure Repeated Control State Reachability is decidable in PVASS

Outline

- **1** VASS and their Toolbox
- **2** Playing in VASS
- **3** Qualitative Analysis of Probabilistic VASS
- Probabilities and Non-Determinism in VASS

5 Conclusion

VASS Markov Decision Processes (VASS-MDP)

VASS-MDP

A *n*-dim VASS-MDP $S = \langle Q, Q_0, Q_P, E, q_0, w \rangle$ is a VASS $\langle Q, E, q_0 \rangle$ equipped with :

- a weight function $w : E \mapsto \mathbb{N} \setminus \{0\}$
- $Q_0 \uplus Q_P$ forms a partition of Q between non-deterministic states Q_0 and probabilistic states Q_P .
- The weight function matters only for transitions leaving probabilistic states.
- The semantics is given in term of a Markov Decision Process
- A scheduler σ ∈ Σ resolves non-determinism
 - It assigns to each finite run ending in a state of *Q*₀ a successor configuration.

Classical Problems in VASS-MDP

- Once a strategy σ is given we get a Markov Chain
- We will denote P^σ(*E*) the probability of event *E* in the Markov chain obtained when considering *σ*

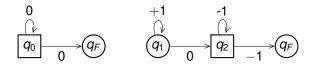
Almost Sure Control State Reachability

- Input: A VASS-MDP S and a control state q_F
- **Output:** Does there exist σ such that $\mathbb{P}^{\sigma}(\Diamond q_F) = 1$?

Almost Sure Control State Repeated Reachability

- Input: A VASS-MDP S and a control state q_F
- Output: Does there exist σ such that P^σ(□◊q_F) = 1 ?
- There are as well the Limit Sure versions sup_{σ∈Σ} P^σ(◊q_F) = 1 and sup_{σ∈Σ} P^σ(□◊q_F) = 1 ?
- Limit Sure and Almost Sure problems are equivalent in finite state systems but not in our case!

Examples



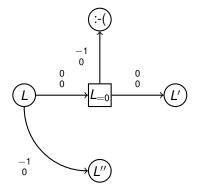
- From $(q_0, 0)$, the state q_F is reached almost surely
- From (q₁,0), the state q_F is reached limit surely but not almost surely

Always the Same Trick Leads to Undecidability

Theorem

Almost Sure (Repeated) Control State Reachability is undecidable for VASS-MDP.

• VASS-MPD to encode L: if $c_1 = 0$ goto L' else $c_1 := c_1 - 1$; goto L''



Here each transition has weight 1

How to Regain Decidability ?

In finite states MDP:

- Almost-sure (repeated) reachability is decidable
- One can characterize the winning configurations by a μ-calculus formula [Chatterjee et al.'09]

How to Regain Decidability ?

In finite states MDP:

- Almost-sure (repeated) reachability is decidable
- One can characterize the winning configurations by a μ-calculus formula [Chatterjee et al.'09]

For VASS:

• We just see some restrictions leading to decidability of a μ -calculus fragment

Does this allow us to obtain some results ?

Single Sided VASS-MDP

- In Single Sided VASS-MDPs, Player P cannot change the counter values
- Hence the underlying VASS is as well single sided

What needs to be done to get the results ?

- Prove that there exists a µ-calculus formula characterizing the winning configurations
- 2 Prove that this formula belongs to the guarded fragment!

One Last Effort

- Take the formula $InvPre(X, Y) = (Q_0 \land \Diamond(X \land Y)) \lor (\Diamond Y \land Q_P \land \Box X)$
- It represents the set of states from which Player 0 can go to X and Y and Player P can go to Y and cannot go out of X
- Now the formula *vX.µY.*(*q_F* ∨ InvPre(*X*, *Y*))
- It represents the configurations that can reach almost surely q_F .
- Warning: This is true only because we have VASS, in other infinite state systems, this does not hold!
- In fact, in this set Player 0 can reach q_F in N steps and Player 0 cannot take him out of this set.

Theorem

[Abdulla et al.'16]

Almost Sure (Repeated) Control State Reachability is decidable in Single Sided VASS-MDP.

• We also show that Limit Sure Reachability is decidable in Single Sided VASS-MDP, but with a different proof.

Outline

- **1** VASS and their Toolbox
- **2** Playing in VASS
- **3** Qualitative Analysis of Probabilistic VASS
- Probabilities and Non-Determinism in VASS

5 Conclusion

Now and Then

To sum up

- Restricting the 'universal' or 'probabilistic' player in VASS leads to decidability
- Some techniques of the finite state world can be adapted to VASS due to the 'short path to reach a state' property
- I have a way to solve my original problem automatically :-)

What's next

- · What about quantitative verification ... it's an hard problem
- Application to Parameterized Verification
- Other games might be decidable with a limited choice for Player P ... (and reachability objectives not restricted to control states).